
A Fast Bresenham Type Algorithm
For Drawing Circles

by

John Kennedy
Mathematics Department

Santa Monica College
1900 Pico Blvd.

Santa Monica, CA 90405

rkennedy@ix.netcom.com

Except for this comment explaining that it is blank for
some deliberate reason, this page is intentionally blank!

Fast Circle Drawing 1

Fast Circle Drawing

There is a well-known algorithm for plotting straight lines on a display device or a plotter where the
grid over which the line is drawn consists of discrete points or pixels. In working with a lattice of points
it is useful to avoid floating point arithmetic. One of the first publications of such a straight-line
algorithm was in , by Jack Bresenham who worked for . The main idea in the algorithm is to"*'& I.B.M.
analyze and manipulate the linear equation so that only integer arithmetic is used in all the calculations.
Integer arithmetic has the advantages of speed and precision; working with floating point values requires
more time and memory and such values would need to be rounded to integers anyway. In this paper we
consider the more difficult problem of approximating the plot of a circle on a grid of discrete pixels,
using only integer arithmetic.

Assume represents the real variable equation of a circle which is to be plotted using aB  C œ <# # #

grid of discrete pixels where each pixel has integer coordinates. There is no loss of generality here since
once the points are determined they may be translated relative to any center that is not the origin (,).! !

We will compare errors associated with the and coordinates of the points that we are plotting.B C
Although we plot points of the form (), these points usually do not exactly satisfy the circles'T B ß C3 3

defining equation. Assuming is accurate, the true -coordinate of is . We plotB C T <  B3
#

3
#È

T B ß C U B ß <  B(), but () is the theoretically precise point that is on the circle. The quantity3 3 3
#

3
#È

È È B  C  <3 3
#

tells how far is off the true circle. If this quantity is negative it means lies inside the true circle,T T
and if this quantity is positive it means is outside the true circle. Of course when this is (which mayT !
be rare but does happen) is exactly on the circle.T

The expression
| |B  C  <3 3

#

is a more practical measure of the error. The absolute value will be needed when it comes to comparing
two such errors, and this new quantity avoids calculating square roots which are an expensive (time-
wise) computer floating point operation. Thus we define a function which we call the V+.3?=I<<9<
which is an error measure for each plotted point.

V+.3?=I<<9< B ß C œ B  C  <() | |3 3 3 3
#

Our plotting strategy is to start with and . In this case,B œ < C œ !" "

V+.3?=I<<9< B ß C œ B  C  < œ <  !  < œ !() | | | | " " " "
#

So the first point we plot fits exactly on the true circle.

Fast Circle Drawing 2

We plot our circle in the same order as would be given by the parametric equations () andB œ >cos
C œ > > !sin() in which starts at and increases. This means the circle is drawn in a counterclockwise
direction, starting on the positive horizontal -axis. On the starting part of the graph the -coordinatesB C
increase or change more rapidly than the -coordinates. So at each iteration we decide to alwaysB
increment , but we need to test when we should decrement .C B

C œ C  " 3 œ "ß #ß $ßá3" 3 , for

Depending on the result of our test for when to decrease , we will have if the test fails, orB B œ B3" 3

B œ B  "3" 3 if the test succeeds.

Our decision as to when to decrease is based on the comparison of the two values,B

V+.3?=I<<9< B  "ß C  " V+.3?=I<<9< B ß C  "() and ()3 3 3 3

Then we choose either or as our new -coordinate depending on which of the twoB  " B B3 3

V+.3?=I<<9< values is the smallest.

In any event, we need to know how the function () changes for each possibleV+.3?=I<<9< B ß C3 3

change in its arguments, i.e, when decreases and increases. In other words, we do not need toB C3 3

calculate anew for each next point, if we just keep track of how the value changes as theV+.3?=I<<9<
arguments change.

If you just plotted the point (), you would next be considering plotting eitherT B ß C3 3

T B  "ß C  " T B ß C  "() or () and you would base your decision of which point to plot after3 3 3 3

comparing () and ().V+.3?=I<<9< B  "ß C  " V+.3?=I<<9< B ß C  "3 3 3 3

V+.3?=I<<9< B  "ß C  " œ l B  "  C  "  < l() () ()3 3 3 3
#

œ l B  #B  "  C  #C  "  < l 3 3
#

3 3

œ l B  C  <  Ð"  #B  #C  " l3 3
#

3 3) ()

The alternative is to plot (). The error at this point is given by:T B ß C  "3 3

V+.3?=I<<9< B ß C  " œ l B  C  "  < l() ()3 3 33
#

œ l B  C  #C  "  < l3 3
#

3

œ l B  C  <  #C  " l3 3
#

3()

Fast Circle Drawing 3

Next we analyze and try to simplify the inequality:

V+.3?=I<<9< B  "ß C  "  V+.3?=I<<9< B ß C  "() ()3 3 3 3

This inequality holds if and only if

l B  C  <  "  #B  #C  " l  l B  C  <  #C  " l3 3 3 3
#

3 3 3() () ()

if and only if

É Ée f c dc d () () () B  C  <  #C  "  "  #B  B  C  <  #C  "3 3 3 3
#

3 3 3

if and only if

e f c dc d () () ()B  C  <  #C  "  "  #B  B  C  <  #C  "3 3 3 3
#

3 3 3
#

if and only if

c d c d () () () ()B  C  <  #C  "  # † B  C  <  #C  " † "  #B  "  #B3 3 3 3
#

3 3 3 3
#

 B  C  <  #C  " () c d3 3
#

3
#

if and only if

† B  C  <  #C  " † "  #B  "  #B  !c d () () () 3 3
#

3 3 3

if and only if

† B  C  <  #C  "  "  #B  !c d () () 3 3
#

3 3

In arriving at the last step we assumed the quantity () is negative so when we divide both"  #B3

sides of the inequality with it, the inequality is reversed.

If () () then we should decrement when we plot# † B  C  <  #C  "  "  #B  ! Bc d3 3
#

3 3

the next point ().T B ß C3" 3"

Having performed the above analysis we can begin to see the usefulness of defining three new
quantities.

Fast Circle Drawing 4

\G2+81/ œ "  #B ()3

] G2+81/ œ #C  " ()3

V+.3?=I<<9< œ B  C  < 3 3
#

These three quantities may also be calculated recursively (i.e., iteratively). Since when and B C3 3

change, they change by , the quantities and always change by exactly .„ " \G2+81/] G2+81/ „ #
These two quantities are always odd. starts counting with the negative number, , and\G2+81/ "  #<
increases toward . counts odd numbers, starting at and increases as well. The initial!] G2+81/ "
V+.3?=I<<9< ! B œ < C œ ! V+.3?=I<<9< value is since and . During the plotting process may be" "

positive, or negative, or . Thus the program's variable neither needs nor uses the! V+.3?=I<<9<
absolute value that was shown earlier.

Now we can give the circle plotting algorithm. Below, , , and refer to the circle's centerG\ G] V
point coordinates and radius value.

procedure PlotCircle(CX, CY, R : longint);
begin
 var X, Y : longint;
 XChange, YChange : longint;
 RadiusError : longint;
 X : R;œ
 Y := 0;
 XChange : 1 2*R;œ 
 YChange : 1;œ
 RadiusError := 0;
 while (X Y) do
 begin
 Plot8CirclePoints(X,Y); {subroutine appears below}
 inc(Y);
 inc(RadiusError, YChange);
 inc(YChange,2);
 if (2*RadiusError + XChange > 0) then
 begin
 dec(X);
 inc(RadiusError, XChange);
 inc(XChange,2)
 end
 end
end; {procedure PlotCircle}

Fast Circle Drawing 5

Due to the circle's symmetry, we need only calculate points in the first of the circle. Thus in the%&°

above code the main while loop terminates when first becomes larger than . The subroutine called] \
T 69>)G3<-6/T938>= %& takes advantage of the symmetry. We only calculate the points in the first , but°

for each such point we actually plot other related points at the same time as indicated in the figure(
below. The subroutine would normally be defined inside the above T 69>)G3<-6/T938>= T 69>G3<-6/
procedure. Also note that and refer to the circle's center point.G\ G]

The numbered regions in the figure below result after dividing each quadrant into two parts. These)
regions may be called octants, which like quadrants are numbered in a counterclockwise direction, with
octant just above the positive -axis." B

procedure Plot8CirclePoints(X,Y : longint);
begin
 PutPixel(CX+X, CY+Y); {point in octant 1}
 PutPixel(CX-X, CY+Y); {point in octant 4}
 PutPixel(CX-X, CY-Y); {point in octant 5}
 PutPixel(CX+X, CY-Y); {point in octant 8}
 PutPixel(CX+Y, CY+X); {point in octant 2}
 PutPixel(CX-Y, CY+X); {point in octant 3}
 PutPixel(CX-Y, CY-X); {point in octant 6}
 PutPixel(CX+Y, CY-X) {point in octant 7}
end; {procedure Plot8CirclePoints}

Fast Circle Drawing 6

plotting
direction is
counterclockwise

1

23

4

5

6 7

8

(x, y)

(y, x)(-y, x)

(x, -y)

(y, -x)(-y, -x)

(-x, -y)

(-x, y)

X+

Y+

X-

Y-

 Figure 1. The 8 symmetric octants of a circle. Only octant #1 points are calculated.

Fast Circle Drawing 7

REFERENCES:

 . Jack Bresenham, , " Algorithm for Computer Control of a Digital Plotter IBM Systems
 Journal, Volume , Number , , pp. - .% " "*'& #& $!

 . Jack Bresenham, ,# A Linear Algorithm for Incremental Display of Circular Arcs
 , Volume , Number , February , pp. - .Communications of the ACM #! # "*(("!! "!'

 . Jerry R. Van Aken, $ An Efficient Ellipse-Drawing Algorithm, I.E.E.E. Computer Graphics
 & Applications, September , pp. - ."*)% #% $&

 . Michael Abrash, , , Number ,% "*%The Good, the Bad, and the Run-sliced Dr. Dobbs Journal
 November , pp. - ."**# "(" "('

