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Fast Ellipse Drawing

 There is a well-known algorithm for plotting straight lines on a display device or a plotter where
the grid over which the line is drawn consists of discrete points or pixels.  In working with a lattice of
points it is useful to avoid floating point arithmetic.  One of the first published algorithms was by Jack
Bresenham who worked for ( .  The main idea in the algorithm is to analyze and manipulateI.B.M. "*'&Ñ
the linear equation so that only integer arithmetic is used in all the calculations.  Integer arithmetic has
the advantages of speed and precision; working with floating point values requires more time and
memory and such values would need to be rounded to integers anyway.  In this paper we consider the
more difficult problem of approximating the plot of an ellipse on a grid of discrete pixels, using only
integer arithmetic.

Before reading this paper it is suggested you read the paper by the same author on drawing circles.
The key ideas in the previous paper give all the details for circles, and there is much similarity between
drawing ellipses and circles.  This paper will discuss the basic differences between circles and ellipses
but it assumes complete familiarity with the circle algorithm.

Assume    represents the real variable equation of an ellipse which is to be plotted  
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using a grid of discrete pixels where each pixel has integer coordinates.  There is no loss of generality
here since once the points are determined they may be translated to any elliptical center that is not the
origin ( ).!ß !

We will compare errors associated with the  and  coordinates of the points that we are plotting.B C
Although we plot points of the form ( ), these points usually do not exactly satisfy the ellipses'T B ß C3 3

defining equation.  In order to avoid dividing we re-write the above equation in the form

, † B  + † C œ , † +# # # # # #

For a given point ( ), the quantityT B ß C3 3

, † B  + † C  , † +# # # # # #
3 3

is a measure telling where  lies in relation to the true ellipse.  If this quantity is negative it means T T
lies inside the true ellipse, and if this quantity is positive it means  is outside the true ellipse.  WhenT
this quantity is  (which may be rare but does happen)  is exactly on the ellipse.  The expression! T

l , † B  + † C  , † + l# # # # # #
3 3

is a more practical measure of the error.  The absolute value will be needed when comparing two such
errors.  We define a function which we call the  which is an error measure for eachI663:=/I<<9<
plotted point.

I663:=/I<<9< B ß C œ l , † B  + † C  , † + l( )3 3
# # # # # #

3 3
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The ellipse plotting algorithm differs from the circle algorithm in that the ellipses' symmetry allows
only  simultaneous points to be plotted at a time.  We still need only calculate points in the first%
quadrant, but we need to complete a full , not just .  In fact, the criterion for where to make the*! %&° °

break is determined by the slope of the tangent line to the ellipse.

In the first quadrant the ellipse tangent line slope is always negative.  Starting on the -axis andB
wrapping in a counterclockwise direction the slope is large and negative which means the -coordinatesC
increase faster than the -coordinates.  But once the tangent line slope passes through the value  thenB "
the -coordinates start changing faster than the -coordinates.B C

Thus we will calculate two sets of points in the first quadrant.  The first set starts on the positive -B
axis and wraps in a counterclockwise direction until the tangent line slope reaches .  The second set"
will start on the positive -axis and wrap in a clockwise direction until the tangent line slope againC
reaches the value .  See the figure at the end of this paper."

For the first set of points we will always increment  and we will test when to decrement .  ThisC B
process is very similar to that for circles.  For the second set of points we will always increment  andB
decide when to decrement .C

Our test decision as to when to decrease  for the first set of points is based on the comparison of theB
two values,

I663:=/I<<9< B  "ß C  " I663:=/I<<9< B ß C  "(  )    and    ( )3 3 3 3

Then we choose either  or  as our new -coordinate depending on which of the twoB  " B B3 3

I663:=/I<<9< values is the smallest.

In any event, we need to know how the function ( ) changes for each possibleI663:=/I<<9< B ß C3 3

change in its arguments.  We do not need to calculate  anew for each next point, if we justI663:=/I<<9<
keep track of how the value changes as the arguments change.

For the first set of points,

I663:=/I<<9< B  "ß C  " œ l , † B  "  + † C  "  , † + l( ) ( ) ( )3 3 3 3
# # # # # #

œ l , † B  , † #B  ,  + † C  + † #C  +  , † + l# # # # # # # # # #
3 33 3

œ l , † B  + † C  , † +  , † "  #B  + † #C  " l# # # # # # # #
3 3 3 3( ) ( )

while
I663:=/I<<9< B ß C  " œ l , † B  + † C  "  , † + l( ) ( )3 3 3

# # # # # #
3

œ l , † B  + † C  + † #C  +  , † + l# # # # # # # #
3 3 3

œ l , † B  + † C  , † +  + † #C  " l# # # # # # #
3 3 3( )
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The analysis of the following ellipse inequality is almost identical to that for the circle inequality
except we multiply the appropriate change factor by either  or .  The end result is that+ ,# #

I663:=/I<<9< B  "ß C  "  I663:=/I<<9< B ß C  "( ) ( )3 3 3 3

if and only if

# † , † B  + † C  , † +  + † #C  "  , † "  #B  !c d ( ) ( )# # # # # # # #
3 3 3 3

When this last inequality holds then we should decrement  when we plot the next pointB
T B ß C( ).3" 3"

Having performed the above analysis we can begin to see the usefulness of defining three new
quantities.

\G2+81/ œ , † "  #B  ( )#
3

] G2+81/ œ + † #C  "  ( )#
3

I663:=/I<<9< œ , † B  + † C  , † +  # # # # # #
3 3

These three quantities may also be calculated recursively (i.e., iteratively).  Since when  and B C3 3

change, they change by , the quantities  and  always change by exactly„ " \G2+81/ ] G2+81/
„ # † , „ # † + \G2+81/ + † "  #+ ] G2+81/# # # and  respectively.  The initial  value is ( ).  The initial 
value is .  The initial  value is .  The program variable    neither needs+ I663:=/I<<9< ! I663:=/I<<9<#

nor uses an absolute value.

We can analyze the tangent line slope by implicitly differentiating the equation

, † B  + † C œ , † +# # # # # #  

# † , † B  # † + † C † C œ !# # w  

Solving for    yieldsC w

C œ
# † , † B

# † + † C
w

#

#
  

  
  

Although one might normally expect to reduce the above fraction by dividing by , it turns out to be#
more efficient to reduce this fraction.  not

Now we can determine where to break the two sets of calculated points in the first quadrant.  The
first set corresponds to where .  So we consider the inequalityC  "w

  
  
# † , † B

# † + † C
 "

#

#
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and we decide to continue to plot points while

# † , † B  # † + † C  !# #    .

Rather than perform the multiplications in this inequality each time through the while-loop test, we
again take advantage of the fact that whenever  and  change, they change by exactly  unit.  So weB C "
define two new values called  and .  Although we compute these valuesW>9::381\ W>9::381]
recursively (iteratively), these values are really represented by the following equations.

W>9::381\ œ # † , † B W>9::381] œ # † + † C     and     # #
3 3

When plotting the first set of points the initial values are given by  andW>9::381\ œ # † , † +#

W>9::381] œ ! B " W>9::381\.  For the first set of points  decreases by  at each stage so  has a
corresponding decrease of  .  For the first set of points  increases by .# † , W>9::381] # † +# #

When plotting the second set of points the initial values are given by  andW>9::381\ œ !
W>9::381] œ # † + † , B " W>9::381\# .  For the second set of points  increases by  at each stage so  has a
corresponding increase of .  For the second set of points  decreases by  each time# † , W>9::381] # † +# #

C " decreases by .

Now we can give the ellipse plotting algorithm.  Below, , , and  and G\ G] \V+.3?= ] V+.3?=
refer to the ellipse's center point coordinates and its horizontal and vertical radial values.  So
\V+.3?= œ + ] V+.3?= œ , XA9FW;?+</ XA9EW;?+</ and .  The constants  and  are the pre-
computed values   and .# † , # † +# #

procedure PlotEllipse(CX, CY, XRadius, YRadius : longint);
begin
   var  X, Y                   : longint;
        XChange, YChange       : longint;
        EllipseError           : longint;
        TwoASquare, TwoBSquare : longint;
        StoppingX, StoppingY   : longint;

   TwoASquare := 2*XRadius*XRadius;
   TwoBSquare := 2*YRadius*YRadius;
   X :  XRadius;œ
   Y := 0;
   XChange :  YRadius*YRadius*(1 2*XRadius);œ 
   YChange :  XRadius*XRadius;œ
   EllipseError := 0;
   StoppingX := TwoBSquare*XRadius;
   StoppingY := 0;

   { algorithm continues on the next page }



Fast Ellipse Drawing 5

   while ( StoppingX  StoppingY ) do     {1st set of points, 
y > 1}w 
      begin
         Plot4EllipsePoints(X,Y);          {subroutine appears later}
         inc(Y);
         inc(StoppingY, TwoASquare);
         inc(EllipseError, YChange);
         inc(YChange,TwoASquare);
         if ((2*EllipseError + XChange) > 0 ) then
            begin
               dec(X);
               dec(StoppingX, TwoBSquare);
               inc(EllipseError, XChange);
               inc(XChange,TwoBSquare)
            end
      end;

   { 1st point set is done; start the 2nd set of points }

   X :  0;œ
   Y := YRadius;
   XChange :  YRadius*YRadius;œ
   YChange :  XRadius*XRadius*(1 2*YRadius);œ 
   EllipseError := 0;
   StoppingX := 0;
   StoppingY := TwoASquare*YRadius;
   while ( StoppingX  StoppingY ) do  {2nd set of points, y < 1}Ÿ w

      begin
         Plot4EllipsePoints(X,Y);       {subroutine appears later}
         inc(X);
         inc(StoppingX, TwoBSquare);
         inc(EllipseError, XChange);
         inc(XChange,TwoBSquare);
         if ((2*EllipseError + YChange) > 0 ) then
            begin
               dec(Y);
               dec(StoppingY, TwoASquare);
               inc(EllipseError, YChange);
               inc(YChange,TwoASquare)
            end
      end
end;  {procedure PlotEllipse}
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The subroutine called  takes advantage of the symmetry in the ellipse.  WeT 69>%I663:=/T938>=
only calculate the points in the first quadrant, but for each such point we actually plot  other points at%
the same time as indicated in the figure below.  The  subroutine would normally beT 69>%I663:=/T938>=
defined inside the above  procedure.  Also note that  and  refer to the ellipse'sT 69>I663:=/ G\ G]
center point.

procedure Plot4EllipsePoints(X,Y : longint);
begin
   PutPixel(CX+X, CY+Y);          {point in quadrant 1}
   PutPixel(CX-X, CY+Y);          {point in quadrant 2}
   PutPixel(CX-X, CY-Y);          {point in quadrant 3}
   PutPixel(CX+X, CY-Y)           {point in quadrant 4}
end;  {procedure Plot4EllipsePoints}

As shown in the figure below, when this subroutine plots the first set of points, the four points would
be like those numbered , , , and   in the figure.  When plotting the second set of points, the four" % & )
points would be like those numbered , , , and   in the figure.# $ ' (
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Figure 1.  This figure indicates the two sets of points in the first quadrant that get plotted.
  The plotting algorithm uses two sets with 4-point symmetry.
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