
A Fast Bresenham Type Algorithm
For Drawing Ellipses

by

John Kennedy
Mathematics Department

Santa Monica College
1900 Pico Blvd.

Santa Monica, CA 90405

rkennedy@ix.netcom.com

Except for this comment explaining that it is blank for
some deliberate reason, this page is intentionally blank!

Fast Ellipse Drawing 1

Fast Ellipse Drawing

 There is a well-known algorithm for plotting straight lines on a display device or a plotter where
the grid over which the line is drawn consists of discrete points or pixels. In working with a lattice of
points it is useful to avoid floating point arithmetic. One of the first published algorithms was by Jack
Bresenham who worked for (. The main idea in the algorithm is to analyze and manipulateI.B.M. "*'&Ñ
the linear equation so that only integer arithmetic is used in all the calculations. Integer arithmetic has
the advantages of speed and precision; working with floating point values requires more time and
memory and such values would need to be rounded to integers anyway. In this paper we consider the
more difficult problem of approximating the plot of an ellipse on a grid of discrete pixels, using only
integer arithmetic.

Before reading this paper it is suggested you read the paper by the same author on drawing circles.
The key ideas in the previous paper give all the details for circles, and there is much similarity between
drawing ellipses and circles. This paper will discuss the basic differences between circles and ellipses
but it assumes complete familiarity with the circle algorithm.

Assume represents the real variable equation of an ellipse which is to be plotted

 B
+ ,

C#

#

#

 œ "

using a grid of discrete pixels where each pixel has integer coordinates. There is no loss of generality
here since once the points are determined they may be translated to any elliptical center that is not the
origin ().!ß !

We will compare errors associated with the and coordinates of the points that we are plotting.B C
Although we plot points of the form (), these points usually do not exactly satisfy the ellipses'T B ß C3 3

defining equation. In order to avoid dividing we re-write the above equation in the form

, † B + † C œ , † +# # # # # #

For a given point (), the quantityT B ß C3 3

, † B + † C , † +# # # # # #
3 3

is a measure telling where lies in relation to the true ellipse. If this quantity is negative it means T T
lies inside the true ellipse, and if this quantity is positive it means is outside the true ellipse. WhenT
this quantity is (which may be rare but does happen) is exactly on the ellipse. The expression! T

l , † B + † C , † + l# # # # # #
3 3

is a more practical measure of the error. The absolute value will be needed when comparing two such
errors. We define a function which we call the which is an error measure for eachI663:=/I<<9<
plotted point.

I663:=/I<<9< B ß C œ l , † B + † C , † + l()3 3
#

3 3

Fast Ellipse Drawing 2

The ellipse plotting algorithm differs from the circle algorithm in that the ellipses' symmetry allows
only simultaneous points to be plotted at a time. We still need only calculate points in the first%
quadrant, but we need to complete a full , not just . In fact, the criterion for where to make the*! %&° °

break is determined by the slope of the tangent line to the ellipse.

In the first quadrant the ellipse tangent line slope is always negative. Starting on the -axis andB
wrapping in a counterclockwise direction the slope is large and negative which means the -coordinatesC
increase faster than the -coordinates. But once the tangent line slope passes through the value thenB "
the -coordinates start changing faster than the -coordinates.B C

Thus we will calculate two sets of points in the first quadrant. The first set starts on the positive -B
axis and wraps in a counterclockwise direction until the tangent line slope reaches . The second set"
will start on the positive -axis and wrap in a clockwise direction until the tangent line slope againC
reaches the value . See the figure at the end of this paper."

For the first set of points we will always increment and we will test when to decrement . ThisC B
process is very similar to that for circles. For the second set of points we will always increment andB
decide when to decrement .C

Our test decision as to when to decrease for the first set of points is based on the comparison of theB
two values,

I663:=/I<<9< B "ß C " I663:=/I<<9< B ß C "() and ()3 3 3 3

Then we choose either or as our new -coordinate depending on which of the twoB " B B3 3

I663:=/I<<9< values is the smallest.

In any event, we need to know how the function () changes for each possibleI663:=/I<<9< B ß C3 3

change in its arguments. We do not need to calculate anew for each next point, if we justI663:=/I<<9<
keep track of how the value changes as the arguments change.

For the first set of points,

I663:=/I<<9< B "ß C " œ l , † B " + † C " , † + l() () ()3 3 3 3
#

œ l , † B , † #B , + † C + † #C + , † + l# # # # # # # # # #
3 33 3

œ l , † B + † C , † + , † " #B + † #C " l# # # # # # # #
3 3 3 3() ()

while
I663:=/I<<9< B ß C " œ l , † B + † C " , † + l() ()3 3 3

#
3

œ l , † B + † C + † #C + , † + l# # # # # # # #
3 3 3

œ l , † B + † C , † + + † #C " l# # # # # # #
3 3 3()

Fast Ellipse Drawing 3

The analysis of the following ellipse inequality is almost identical to that for the circle inequality
except we multiply the appropriate change factor by either or . The end result is that+ ,# #

I663:=/I<<9< B "ß C " I663:=/I<<9< B ß C "() ()3 3 3 3

if and only if

† , † B + † C , † + + † #C " , † " #B !c d () ()# # # # # # #
3 3 3 3

When this last inequality holds then we should decrement when we plot the next pointB
T B ß C().3" 3"

Having performed the above analysis we can begin to see the usefulness of defining three new
quantities.

\G2+81/ œ , † " #B ()#
3

] G2+81/ œ + † #C " ()#
3

I663:=/I<<9< œ , † B + † C , † + # # # # # #
3 3

These three quantities may also be calculated recursively (i.e., iteratively). Since when and B C3 3

change, they change by , the quantities and always change by exactly„ " \G2+81/] G2+81/
„ # † , „ # † + \G2+81/ + † " #+] G2+81/# # # and respectively. The initial value is (). The initial
value is . The initial value is . The program variable neither needs+ I663:=/I<<9< ! I663:=/I<<9<#

nor uses an absolute value.

We can analyze the tangent line slope by implicitly differentiating the equation

, † B + † C œ , † +# # # # # #

† , † B # † + † C † C œ !# # w

Solving for yieldsC w

C œ
† , † B

† + † C
w

#

#

Although one might normally expect to reduce the above fraction by dividing by , it turns out to be#
more efficient to reduce this fraction. not

Now we can determine where to break the two sets of calculated points in the first quadrant. The
first set corresponds to where . So we consider the inequalityC "w

† , † B

† + † C
 "

#

#

Fast Ellipse Drawing 4

and we decide to continue to plot points while

† , † B # † + † C !# # .

Rather than perform the multiplications in this inequality each time through the while-loop test, we
again take advantage of the fact that whenever and change, they change by exactly unit. So weB C "
define two new values called and . Although we compute these valuesW>9::381\ W>9::381]
recursively (iteratively), these values are really represented by the following equations.

W>9::381\ œ # † , † B W>9::381] œ # † + † C and # #
3 3

When plotting the first set of points the initial values are given by andW>9::381\ œ # † , † +#

W>9::381] œ ! B " W>9::381\. For the first set of points decreases by at each stage so has a
corresponding decrease of . For the first set of points increases by .# † , W>9::381] # † +# #

When plotting the second set of points the initial values are given by andW>9::381\ œ !
W>9::381] œ # † + † , B " W>9::381\# . For the second set of points increases by at each stage so has a
corresponding increase of . For the second set of points decreases by each time# † , W>9::381] # † +# #

C " decreases by .

Now we can give the ellipse plotting algorithm. Below, , , and and G\ G] \V+.3?=] V+.3?=
refer to the ellipse's center point coordinates and its horizontal and vertical radial values. So
\V+.3?= œ +] V+.3?= œ , XA9FW;?+</ XA9EW;?+</ and . The constants and are the pre-
computed values and .# † , # † +# #

procedure PlotEllipse(CX, CY, XRadius, YRadius : longint);
begin
 var X, Y : longint;
 XChange, YChange : longint;
 EllipseError : longint;
 TwoASquare, TwoBSquare : longint;
 StoppingX, StoppingY : longint;

 TwoASquare := 2*XRadius*XRadius;
 TwoBSquare := 2*YRadius*YRadius;
 X : XRadius;œ
 Y := 0;
 XChange : YRadius*YRadius*(1 2*XRadius);œ
 YChange : XRadius*XRadius;œ
 EllipseError := 0;
 StoppingX := TwoBSquare*XRadius;
 StoppingY := 0;

 { algorithm continues on the next page }

Fast Ellipse Drawing 5

 while (StoppingX StoppingY) do {1st set of points,
y > 1}w
 begin
 Plot4EllipsePoints(X,Y); {subroutine appears later}
 inc(Y);
 inc(StoppingY, TwoASquare);
 inc(EllipseError, YChange);
 inc(YChange,TwoASquare);
 if ((2*EllipseError + XChange) > 0) then
 begin
 dec(X);
 dec(StoppingX, TwoBSquare);
 inc(EllipseError, XChange);
 inc(XChange,TwoBSquare)
 end
 end;

 { 1st point set is done; start the 2nd set of points }

 X : 0;œ
 Y := YRadius;
 XChange : YRadius*YRadius;œ
 YChange : XRadius*XRadius*(1 2*YRadius);œ
 EllipseError := 0;
 StoppingX := 0;
 StoppingY := TwoASquare*YRadius;
 while (StoppingX StoppingY) do {2nd set of points, y < 1}Ÿ w

 begin
 Plot4EllipsePoints(X,Y); {subroutine appears later}
 inc(X);
 inc(StoppingX, TwoBSquare);
 inc(EllipseError, XChange);
 inc(XChange,TwoBSquare);
 if ((2*EllipseError + YChange) > 0) then
 begin
 dec(Y);
 dec(StoppingY, TwoASquare);
 inc(EllipseError, YChange);
 inc(YChange,TwoASquare)
 end
 end
end; {procedure PlotEllipse}

Fast Ellipse Drawing 6

The subroutine called takes advantage of the symmetry in the ellipse. WeT 69>%I663:=/T938>=
only calculate the points in the first quadrant, but for each such point we actually plot other points at%
the same time as indicated in the figure below. The subroutine would normally beT 69>%I663:=/T938>=
defined inside the above procedure. Also note that and refer to the ellipse'sT 69>I663:=/ G\ G]
center point.

procedure Plot4EllipsePoints(X,Y : longint);
begin
 PutPixel(CX+X, CY+Y); {point in quadrant 1}
 PutPixel(CX-X, CY+Y); {point in quadrant 2}
 PutPixel(CX-X, CY-Y); {point in quadrant 3}
 PutPixel(CX+X, CY-Y) {point in quadrant 4}
end; {procedure Plot4EllipsePoints}

As shown in the figure below, when this subroutine plots the first set of points, the four points would
be like those numbered , , , and in the figure. When plotting the second set of points, the four" % &)
points would be like those numbered , , , and in the figure.# $ ' (

The tangent line slope
at this point = -1

2nd plotting direction
is clockwise

1st plotting
 direction
 is
 counter-
clockwise

1

2

4

5

6 7

8

(x , y)
1 1

(x , y)
22

(-x , y)2 2

(x , -y)
1 1

(x , -y)
2 2(-x , -y)

2 2

(-x , -y)
1 1

(-x , y)
1 1

X+

Y+

X-

Y-

1st set of
points

2nd set of
points

3

Figure 1. This figure indicates the two sets of points in the first quadrant that get plotted.
 The plotting algorithm uses two sets with 4-point symmetry.

Fast Ellipse Drawing 7

REFERENCES:

 . Jack Bresenham, , " Algorithm for Computer Control of a Digital Plotter IBM Systems
 Journal, Volume , Number , , pp. - .% " "*'& #& $!

 . Jack Bresenham, ,# A Linear Algorithm for Incremental Display of Circular Arcs
 , Volume , Number , February , pp. - .Communications of the ACM #! # "*(("!! "!'

 . Jerry R. Van Aken, $ An Efficient Ellipse-Drawing Algorithm, I.E.E.E. Computer Graphics
 & Applications, September , pp. - ."*)% #% $&

 . Michael Abrash, , , Number ,% "*%The Good, the Bad, and the Run-sliced Dr. Dobbs Journal
 November , pp. - ."**# "(" "('

