ATANH: Difference between revisions

From QB64 Phoenix Edition Wiki
Jump to navigation Jump to search
No edit summary
Tag: Manual revert
No edit summary
 
(One intermediate revision by the same user not shown)
Line 8: Line 8:


{{PageSeeAlso}}
{{PageSeeAlso}}
* [[_D2G]] {{text|(degree to gradient}}, [[_D2R]] {{text|(degree to radian)}}
* [[_D2G]] {{Text|(degree to gradient}}, [[_D2R]] {{Text|(degree to radian)}}
* [[_G2D]] {{text|(gradient to degree)}}, [[_G2R]] {{text|(gradient to degree)}}
* [[_G2D]] {{Text|(gradient to degree)}}, [[_G2R]] {{Text|(gradient to degree)}}
* [[_R2D]] {{text|(radian to degree)}}, [[_R2G]] {{text|(radian to gradient)}}
* [[_R2D]] {{Text|(radian to degree)}}, [[_R2G]] {{Text|(radian to gradient)}}
* [[COS]] {{text|(cosine)}}, [[SIN]] {{text|(sine)}}, [[TAN]] {{text|(tangent)}}
* [[COS]] {{Text|(cosine)}}, [[SIN]] {{Text|(sine)}}, [[TAN]] {{Text|(tangent)}}
* [[_ACOS]] {{text|(arc cosine)}}, [[_ASIN]] {{text|(arc sine)}}, [[ATN]] {{text|(arc tangent)}}
* [[_ACOS]] {{Text|(arc cosine)}}, [[_ASIN]] {{Text|(arc sine)}}, [[ATN]] {{Text|(arc tangent)}}
* [[_ACOSH]] {{text|(arc hyperbolic  cosine)}}, [[_ASINH]] {{text|(arc hyperbolic  sine)}}
* [[_ACOSH]] {{Text|(arc hyperbolic  cosine)}}, [[_ASINH]] {{Text|(arc hyperbolic  sine)}}
* [[_ATAN2]] {{text|(Compute arc tangent with two parameters)}}
* [[_ATAN2]] {{Text|(Compute arc tangent with two parameters)}}
* [[_HYPOT]] {{text|(hypotenuse)}}
* [[_HYPOT]] {{Text|(hypotenuse)}}
*[[Mathematical Operations]]
*[[Mathematical Operations]]
*[[Mathematical_Operations#Derived_Mathematical_Functions|Derived Mathematical Functions]]
*[[Mathematical Operations#Derived_Mathematical_Functions|Derived Mathematical Functions]]




{{PageNavigation}}
{{PageNavigation}}

Latest revision as of 22:13, 11 February 2023

The _ATANH returns the arc hyperbolic tangent of x!, expressed in radians.


Syntax

return_value! = _ATANH(x!)


See also



Navigation:
Main Page with Articles and Tutorials
Keyword Reference - Alphabetical
Keyword Reference - By usage
Report a broken link