Well, I did what I could. If you overdo a certain frequency, the crackling will still be heard. When used outside the extreme limits, I think it's a little better. I added two effects to it. Key 3 turns the ping pong effect on/off, and keys 4, 5, 6, 7 set its parameters. 4 and 5 for Delay Time and 6 and 7 for FeddBack. The second effect is inactive until you turn it up, then turn it down to deactivate it (keys 1 and 2). Oh, and it plays in stereo. Work is still ongoing.
Code: (Select All)
_Title "QB64PE Sound Equalizer v. 2"
Zdroj = _SndOpen("b.mp3") 'USE MP3 here (MEM read singles from _Memsound block)
Dim Zvuk As _MEM
Dim A As Long
UU = 4095 ' We detecting frequency from 8192 samples (0 to 8191)
Dim Blok(UU) As Single ' Block for FFT samples - Left channel
Dim BlokR(UU) As Single ' Right
Dim RealPart(UU) As Single, ImagPart(UU) As Single ' Real and imaginary signal values for FFT - Left
Dim RealPartR(UU) As Single, ImagPartR(UU) As Single ' - Right
Dim Eq(9) As Single
ReDim NewRealPartR(UU) As Single
ReDim NewImagPartR(UU) As Single
ReDim NewRealPart(UU) As Single
ReDim NewImagPart(UU) As Single
ReDim Shared delayBufferL(0) As Single, delayBufferR(0) As Single
Dim Shared N As Long
Dim VzorkovaciFrekvence As Single ' SoundRate
Dim VisualEq(9) As Single
Dim Colors(9) As _Unsigned Long
Colors(0) = _RGB32(255, 0, 0)
Colors(1) = _RGB32(255, 127, 0)
Colors(2) = _RGB32(255, 255, 0)
Colors(3) = _RGB32(127, 255, 0)
Colors(4) = _RGB32(0, 255, 0)
Colors(5) = _RGB32(0, 255, 127)
Colors(6) = _RGB32(0, 255, 255)
Colors(7) = _RGB32(0, 127, 255)
Colors(8) = _RGB32(0, 0, 255)
Colors(9) = _RGB32(127, 0, 255)
' Scales for correcting the sensitivity of the human ear (Fletcher-Munson)
Dim Korekce(9) As Single
Korekce(0) = 2.0 ' We amplify bass frequencies (2 to 64 Hz)
Korekce(1) = 1.8 ' We will amplify low bass (65 to 125 Hz)
Korekce(2) = 1.5 ' Middle bass (126 to 250 Hz)
Korekce(3) = 1.2 ' Lower midrange (251 to 500 Hz)
Korekce(4) = 1.0 ' Mindrange (501 to 1000 Hz)
Korekce(5) = 0.8 ' Higher Mindrange (1001 to 2000 Hz)
Korekce(6) = 0.7 ' Lower treble (2001 to 4000 Hz)
Korekce(7) = 0.6 ' Treble (4001 to 8000 Hz)
Korekce(8) = 0.5 ' Higher treble (8001 to 16000 Hz)
Korekce(9) = 0.4 ' Ultrasonic frequencies (16001 to 22000 Hz) are suppressed
N = UU + 1 ' FFT Block size
Fk = 1
Zvuk = _MemSound(Zdroj, 0)
VzorkovaciFrekvence = _SndRate
Screen _NewImage(800, 600, 32) ' Create a new window for visualization
For FillEq = 0 To 9
Eq(FillEq) = 2
Next
Do Until A& = Zvuk.SIZE
' Načtení bloku vzorků
For i = 0 To N - 1
If A& >= Zvuk.SIZE Then Exit For
LevaStopa = _MemGet(Zvuk, Zvuk.OFFSET + A&, Single)
PravaStopa = _MemGet(Zvuk, Zvuk.OFFSET + A& + 4, Single)
Blok(i) = LevaStopa ' Left Track
BlokR(i) = PravaStopa ' Right Track
RealPart(i) = LevaStopa ' Left Track AudioData RealPart must contains sound data
RealPartR(i) = PravaStopa ' Right Track AudioData
ImagPart(i) = 0 ' Left Track imaginary data
ImagPartR(i) = 0 ' Right Track imaginary data
A& = A& + 8 ' go to next sample (8 bytes = 2 * 4 (left, right))
Next i
' Apply FFT to block
' NormalizeSignal RealPart()
' NormalizeSignal RealPartR()
Call FFT(RealPart(), ImagPart(), N) ' shift sound from time run to frequency run - Left Track
Call FFT(RealPartR(), ImagPartR(), N) ' the same - Right Track
'spectrum filtration
For k = 0 To N - 1
Frekvence = k * VzorkovaciFrekvence / N 'Frequency calculation (k * _SndRate / N)
Vol = 0
Select Case Frekvence 'use frequency for equalizing!
Case 10 To 64: Vol = Eq(0): VisualEq(0) = VisualEq(0) + Abs(RealPart(k)) * Eq(0) * Korekce(0)
Case 60 To 120: Vol = Eq(1): VisualEq(1) = VisualEq(1) + Abs(RealPart(k)) * Eq(1) * Korekce(1)
Case 110 To 250: Vol = Eq(2): VisualEq(2) = VisualEq(2) + Abs(RealPart(k)) * Eq(2) * Korekce(2)
Case 230 To 500: Vol = Eq(3): VisualEq(3) = VisualEq(3) + Abs(RealPart(k)) * Eq(3) * Korekce(3)
Case 480 To 1000: Vol = Eq(4): VisualEq(4) = VisualEq(4) + Abs(RealPart(k)) * Eq(4) * Korekce(4)
Case 900 To 2000: Vol = Eq(5): VisualEq(5) = VisualEq(5) + Abs(RealPart(k)) * Eq(5) * Korekce(5)
Case 1900 To 4000: Vol = Eq(6): VisualEq(6) = VisualEq(6) + Abs(RealPart(k)) * Eq(6) * Korekce(6)
Case 3700 To 8000: Vol = Eq(7): VisualEq(7) = VisualEq(7) + Abs(RealPart(k)) * Eq(7) * Korekce(7)
Case 7000 To 16000: Vol = Eq(8): VisualEq(8) = VisualEq(8) + Abs(RealPart(k)) * Eq(8) * Korekce(8)
Case 14000 To 22000: Vol = Eq(9): VisualEq(9) = VisualEq(9) + Abs(RealPart(k)) * Eq(9) * Korekce(9)
End Select
RealPart(k) = RealPart(k) * Vol 'update frequency so, as is equalization set
ImagPart(k) = ImagPart(k) * Vol
RealPartR(k) = RealPartR(k) * Vol
ImagPartR(k) = ImagPartR(k) * Vol
Next k
'-------------------------------- A 740g wrote: This is cool stuff! I'll check it out after work. Have you tried doing pitch shifts? ---------------------------------------
'REPLY:
'Changing the size of the spectrum according to the new tuning
For i = 0 To N - 1
'Recalculation of the new index
newIndex = i * Fk
'Verifying that newIndex is within a valid range
If newIndex > N - 1 Then
newIndex = N - 1
End If
' Find two adjacent indices for interpolation
index1 = Int(newIndex) 'Nearest smaller or equal index
index2 = index1 + 1 ' Nearest larger index
' Verify that index2 is also in a valid range
If index2 > N - 1 Then
index2 = index1
End If
' Weight for linear interpolation
weight = newIndex - index1
'Linear interpolation of real and imaginary parts - left channel
RealPartInterpolated = RealPart(index1) + weight * (RealPart(index2) - RealPart(index1))
ImagPartInterpolated = ImagPart(index1) + weight * (ImagPart(index2) - ImagPart(index1))
'Linear interpolation - right channel
RealPartInterpolatedR = RealPartR(index1) + weight * (RealPartR(index2) - RealPartR(index1))
ImagPartInterpolatedR = ImagPartR(index1) + weight * (ImagPartR(index2) - ImagPartR(index1))
'Saving interpolated values to a new spectrum
NewRealPart(i) = RealPartInterpolated
NewImagPart(i) = ImagPartInterpolated
NewRealPartR(i) = RealPartInterpolatedR
NewImagPartR(i) = ImagPartInterpolatedR
Next i
'-------------------------------------------------------- REPLY END ---------------------------------------------------------------------------------------------------------
'Unlike the previous code, here continue with the NewRealPart and NewImagPart fields
'create new audio signal using IFFT (from this block)
Call IFFT(NewRealPart(), NewImagPart(), N)
Call IFFT(NewRealPartR(), NewImagPartR(), N)
StereoAutoPanner NewRealPart(), NewRealPartR(), sp, _SndRate
If pong Then
PingPongDelay NewRealPart(), NewRealPartR(), delaytime, feedback, _SndRate
End If
LowPassFilterInPlace NewRealPart(), 14000, _SndRate
LowPassFilterInPlace NewRealPartR(), 14000, _SndRate
NormalizeSignal NewRealPart()
NormalizeSignal NewRealPartR()
'Play created signal
For i = 0 To N - 1
_SndRaw NewRealPart(i), NewRealPartR(i)
Next i
Cls
For EqBand = 0 To 9
VisualEq(EqBand) = VisualEq(EqBand) / N ' Normalize
BarHeight = VisualEq(EqBand) * 80 ' Scale to fit screen
Line (EqBand * 80 + 20, 600)-(EqBand * 80 + 60, 600 - BarHeight), Colors(EqBand), BF
Next
Do Until _SndRawLen < .05 'wait until is possible playing next block and it this time use keyboard
i$ = InKey$
Select Case LCase$(i$)
Case "q": Eq(0) = Eq(0) + .1
Case "a": Eq(0) = Eq(0) - .1
Case "w": Eq(1) = Eq(1) + .1
Case "s": Eq(1) = Eq(1) - .1
Case "e": Eq(2) = Eq(2) + .1
Case "d": Eq(2) = Eq(2) - .1
Case "r": Eq(3) = Eq(3) + .1
Case "f": Eq(3) = Eq(3) - .1
Case "t": Eq(4) = Eq(4) + .1
Case "g": Eq(4) = Eq(4) - .1
Case "y": Eq(5) = Eq(5) + .1
Case "h": Eq(5) = Eq(5) - .1
Case "u": Eq(6) = Eq(6) + .1
Case "j": Eq(6) = Eq(6) - .1
Case "i": Eq(7) = Eq(7) + .1
Case "k": Eq(7) = Eq(7) - .1
Case "o": Eq(8) = Eq(8) + .1
Case "l": Eq(8) = Eq(8) - .1
Case "p": Eq(9) = Eq(9) + .1
Case ";": Eq(9) = Eq(9) - .1
Case "+": Fk = Fk + .01
Case "-": Fk = Fk - .01
Case "*": Fk = 1
Case "1": sp = sp + 0.01
Case "2": sp = sp - 0.01
Case "3": pong = Not pong: _Delay .01
Case "4": delaytime = delaytime + .01
Case "5": delaytime = delaytime - .01
Case "6": feedback = feedback + .01
Case "7": feedback = feedback - .01
End Select
If Fk < .1 Then Fk = .1
If Fk > 1.9 Then Fk = 1.9
Locate 4
Print " Use keys for equalize:"
Print
Print " q/a [2 to 64 Hz] "; Int(Eq(0) / 8 * 100); "% "
Print " w/s [65 to 125 Hz] "; Int(Eq(1) / 8 * 100); "% "
Print " e/d [126 to 250 Hz] "; Int(Eq(2) / 8 * 100); "% "
Print " r/f [251 to 500 Hz] "; Int(Eq(3) / 8 * 100); "% "
Print " t/g [501 to 1000 Hz] "; Int(Eq(4) / 8 * 100); "% "
Print " y/h [1001 to 2000 Hz] "; Int(Eq(5) / 8 * 100); "% "
Print " u/j [2001 to 4000 Hz] "; Int(Eq(6) / 8 * 100); "% "
Print " i/k [4001 to 8000 Hz] "; Int(Eq(7) / 8 * 100); "% "
Print " o/l [8001 to 16000 Hz] "; Int(Eq(8) / 8 * 100); "% "
Print " p/; [16001 to 22000 Hz] "; Int(Eq(9) / 8 * 100); "% "
Print " + or - for changing frequency shift, * for reset back "
Print " 1, 2 for Stereo panner"; Int(sp * 100) / 100
Print "3, 4, 5, 6, 7 for Ping-Pong effect "; pong; Int(delaytime * 100) / 100; Int(feedback * 100) / 100
_Display
For EqVolsTest = 0 To 9
If Eq(EqVolsTest) > 8 Then Eq(EqVolsTest) = 8
If Eq(EqVolsTest) < 0 Then Eq(EqVolsTest) = 0
Next
Loop
'_Display
Loop
_MemFree Zvuk
End
Sub FFT (iRealPart() As Single, iImagPart() As Single, N As Long)
Dim i As Long, j As Long, k As Long, m As Long, stp As Long
Dim angle As Double
Dim tReal As Double, tImag As Double, uReal As Double, uImag As Double
' Bit-reverse permutation
j = 0
For i = 0 To N - 1
If i < j Then
Swap iRealPart(i), iRealPart(j)
Swap iImagPart(i), iImagPart(j)
End If
k = N \ 2
Do While (k >= 1 And j >= k)
j = j - k
k = k \ 2
Loop
j = j + k
Next i
m = 1
Do While m < N
stp = m * 2
angle = -3.14159265359 / m
For k = 0 To m - 1
uReal = Cos(k * angle)
uImag = Sin(k * angle)
For i = k To N - 1 Step stp
j = i + m
tReal = uReal * iRealPart(j) - uImag * iImagPart(j)
tImag = uReal * iImagPart(j) + uImag * iRealPart(j)
iRealPart(j) = iRealPart(i) - tReal
iImagPart(j) = iImagPart(i) - tImag
iRealPart(i) = iRealPart(i) + tReal
iImagPart(i) = iImagPart(i) + tImag
Next i
Next k
m = stp
Loop
End Sub
Sub IFFT (iRealPart() As Single, iImagPart() As Single, N As Long)
Dim i As Long
' Reversing the signs of imaginary components
For i = 0 To N - 1
iImagPart(i) = -iImagPart(i)
Next i
' Performing FFT
Call FFT(iRealPart(), iImagPart(), N)
'Normalization and re-rotation of the signs of the imaginary components
For i = 0 To N - 1
iRealPart(i) = iRealPart(i) / N
iImagPart(i) = -iImagPart(i) / N
Next i
End Sub
'---------------------------------------------------------------------
Sub NormalizeSignal (arr() As Single)
Dim maxVal As Single
Dim i As Long
' Najít maximální absolutní hodnotu Find maximal value in signal Find maximum absolute value Find maximum value in signal
maxVal = 0
For i = LBound(arr) To UBound(arr)
If Abs(arr(i)) > maxVal Then maxVal = Abs(arr(i))
Next
' Pokud je maximální hodnota větší než 1.0, normalizovat signál if maximal value is bigger than 1, normalize signal
If maxVal > 1 Then
For i = LBound(arr) To UBound(arr)
arr(i) = arr(i) / maxVal
Next
End If
End Sub
Sub LowPassFilterInPlace (signalArray() As Single, cutoffFreq As Single, sampleRate As Single)
Dim alpha As Single
Dim prevOutput As Single
alpha = 1.0 / (1.0 + (sampleRate / (2 * _Pi * cutoffFreq)))
prevOutput = signalArray(0)
For i = 1 To UBound(signalArray)
signalArray(i) = alpha * signalArray(i) + (1 - alpha) * prevOutput
prevOutput = signalArray(i)
Next
End Sub
Sub StereoAutoPanner (leftArray() As Single, rightArray() As Single, panSpeed As Single, sampleRate As Single)
Static t As Single ' Časová proměnná pro oscilaci
For i = 0 To UBound(leftArray)
Dim pan As Single
pan = 0.5 * (1 + Sin(t * 2 * _Pi * panSpeed / sampleRate)) ' Sinusová vlna (0 až 1) Sine wave (0 to 1)
' Změna hlasitosti kanálů podle pan
Dim original As Single
original = (leftArray(i) + rightArray(i)) * 0.5 ' Mono mix pro efekt Mono mix for effect
leftArray(i) = original * (1 - pan)
rightArray(i) = original * pan
t = t + 1
Next
' Udržení času v rámci jednoho cyklu (optimalizace) Maintaining time within one cycle (optimization
If t > sampleRate / panSpeed Then t = 0
End Sub
Sub PingPongDelay (leftArray() As Single, rightArray() As Single, delayTime As Single, feedback As Single, sampleRate As Single)
Static delayIndex As Long
' Kontrola platnosti vstupních parametrů Checking the validity of input parameters
If delayTime <= 0 Or feedback <= 0 Or sampleRate <= 0 Then
Exit Sub ' Pokud jsou parametry neplatné, efekt se nevykoná If the parameters are invalid, the effect will not be executed
End If
' Výpočet velikosti zpoždění v počtu vzorků Calculating the size of the delay in the number of samples
Dim delaySamples As Long
delaySamples = Int(delayTime * sampleRate)
' Kontrola a přizpůsobení velikosti bufferů Checking and adjusting buffer sizes
If UBound(delayBufferL) < delaySamples Then
ReDim _Preserve delayBufferL(0 To delaySamples)
ReDim _Preserve delayBufferR(0 To delaySamples)
End If
' Zpracování zvukových dat Audio data processing
For i = 0 To UBound(leftArray)
Dim dryL As Single, dryR As Single
Dim wetL As Single, wetR As Single
' Původní signál (suchý zvuk) Original signal (dry sound)
dryL = leftArray(i)
dryR = rightArray(i)
' Načtení ozvěny z bufferu Read echo from buffer
wetL = delayBufferL(delayIndex)
wetR = delayBufferR(delayIndex)
' Kombinace suchého a efektového signálu Combination of dry and effect signal
leftArray(i) = dryL + wetR * 0.5
rightArray(i) = dryR + wetL * 0.5
' Aktualizace bufferů Buffer updates
delayBufferL(delayIndex) = dryL + wetR * feedback
delayBufferR(delayIndex) = dryR + wetL * feedback
' Posun indexu Index shift
delayIndex = (delayIndex + 1) Mod delaySamples
Next
End Sub