Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
b+ String Math Update
#1
I have Square Root worked out better faster and accurate to any decimal places (currently set 100) and conversions Dec2Bin$ strings and Bin2Dec$, still working on Real Number Power$

Dec2Bin$ and Bin2Dec$ don't work like bit math for negative values but like decimal numbers ie a minus sign says it's negative and no sign means it's positive. There is no checking if the test$ binary you enter is just 1's and zero's so don't test that and say it's not working. So to test -8.375 try -1000.011

Code: (Select All)
Option _Explicit
_Title "String Math Powers 2022-09-22" ' b+ try to do powers with string math
' directly from "String Math 2021-06-14" ' b+ from SM2 (2021 June) a bunch of experiments to fix and improve speeds.
' June 2021 fix some old String Math procedures, better nInverse with new LT frunction, remove experimental procedures.
' Now with decent sqrRoot it works independent of Mr$() = Math Regulator that handles signs and decimals and calls to
' add$(), subtr$, mult$, divide$ (100 significant digits),  add$(), subtr$, mult$ are exact!
' If you need higher precsion divide, I recommend use nInverse on denominator (integer)
' then add sign and decimal and mult$() that number with numerator to get divsion answer in higher precision than 100.
' (See how Mr$() handles division and just call nInverse$ with what precision you need.)
' The final function showDP$() is for displaying these number to a set amount of Decimal Places.

' The main code is sampler of tests performed with these functions.
' 2022-09-22 a little fix to MR$ for Function change versions QB64 v2.0+
' Attempt to do Powers with SQRs of 2 Multipliers
' needs to be able to convert a number into a binary String
' might also need a Table setup for nested SQR's of 2
' needs a decent BigSQR$ string function for SQR
' 2022-09-25 this is one frustration after another LT does not work for strings??? but < does?
' try some more with BigSQR concentrate on Integer part first, just get that right
' 2022-09-26 Bin2Dec$ Function seems OK

$Console:Only

Randomize Timer

'Dim As Double i ' testing Dec2Bin$
'Dim p2$, x$, sum$
'p2$ = "1"
'For i = 1 To 50
'    p2$ = mr$(p2$, "/", "2")
'    x$ = mr$(x$, "+", "1")
'    sum$ = mr$(x$, "+", p2$)
'    Print sum$, Dec2Bin$(sum$)
'    'Sleep
'Next
'Print: Print " Square Roots:"
'Dim b$, intger$
'For i = 1 To 50
'    b$ = Str$(i + 1 / (2 ^ i))
'    Print b$, bigSQR$(b$)
'Next
'intger$ = "10000000000000000000000000000000000000000000000000000000000000000"
'Print: Print "Bonus SQR of "; intger$; " Len  = "; Len(intger$); " is:"
'b$ = bigSQR$(intger$)
'Print b$, " Len Integer Part ="; Len(Mid$(b$, 1, InStr(b$, ".") - 1))
'intger$ = "100000000000000000000000000000000000000000000000000000000000000000"
'Print: Print "Bonus SQR of "; intger$; " Len = "; Len(intger$); " is:"
'b$ = bigSQR$(intger$)
'Print b$, " Len Integer Part ="; Len(Mid$(b$, 1, InStr(b$, ".") - 1))
'Print: Print " Square Roots:"

'  ============ For comparison this was the old routine
'Print: Print "Square Roots the old way of estimation:"
'For i = 1 To 50
'    b$ = Str$(i + 1 / (2 ^ i))
'    Print b$, sqrRoot$(b$)
'Next
'intger$ = "10000000000000000000000000000000000000000000000000000000000000000"
'Print: Print "Bonus SQR of "; intger$; " Len  = "; Len(intger$); " is:"
'b$ = sqrRoot$(intger$)
'Print b$, " Len Integer Part ="; Len(b$)
'intger$ = "100000000000000000000000000000000000000000000000000000000000000000"
'Print: Print "Bonus SQR of "; intger$; " Len = "; Len(intger$); " is:"
'b$ = sqrRoot$(intger$)
'Print b$, " Len Integer Part ="; Len(Mid$(b$, 1, InStr(b$, ".") - 1))
' ============================================================================

' OK now test the new Power$ routine
'Print power$("5", ".333333333333333333333333333333333") ' 2     ' no this ain't work in well at all
Dim test$, ans$
Do
    Input "Enter a Binary with/without - sgn or decimal "; test$
    ans$ = Bin2Dec$(test$)
    Print "Decimal is: "; ans$
    Print "Check conversion back: "; Dec2Bin$(ans$)
Loop Until test$ = ""

' x to the power of pow
Function power$ (xx$, pow$) '                    so far this sucks, decimal is lost and digits only good for about 10 places 10% of dp in SQR(2)'s
    Dim build$, ip$, fp$, x$, bs$, runningXSQR$
    Dim As Long dot, i
    x$ = _Trim$(xx$)
    dot = InStr(pow$, ".")
    If dot Then
        ip$ = Mid$(pow$, 1, dot - 1)
        fp$ = Mid$(pow$, dot) ' keep dot
    Else
        ip$ = pow$
        fp$ = ""
    End If
    'integer part or power
    build$ = "1"
    If ip$ <> "" Then
        While LTE("0", ip$)
            build$ = mr$(build$, "*", x$)
            ip$ = mr$(ip$, "-", "1")
        Wend
    End If
    If fp$ = "" Or fp$ = "." Then power$ = build$: Exit Function
    build$ = build$ + "."
    'now for the fraction part convert decimal to Binary
    bs$ = Dec2Bin$(fp$)
    'at moment we haven't taken any sqr of x
    runningXSQR$ = mr$(x$, "*", x$)
    'run through all the 0's and 1's in the bianry expansion of the fraction part of the power float
    For i = 1 To Len(bs$)
        'this is the matching sqr of the sqr of the sqr... of x
        runningXSQR$ = bigSQR$(runningXSQR$)
        'for every 1 in the expansion, multiple our build with the running sqr of ... sqr of x
        If Mid$(bs$, i, 1) = "1" Then build$ = mr$(build$, "*", runningXSQR$)
    Next
    'our build should be a estimate or x to power of pow
    power$ = build$
End Function

Function Bin2Dec$ (bn$) ' bn$ is binary string number with possible neg sign and decimal
    Dim b$, sgn$, ip$, fp$, p2$, build$
    Dim As Long dot, i
    b$ = _Trim$(bn$)
    If Left$(b$, 1) = "-" Then sgn$ = "-": b$ = Mid$(b$, 2) Else sgn$ = ""
    dot = InStr(b$, ".")
    If dot Then
        ip$ = Mid$(b$, 1, dot - 1)
        fp$ = Mid$(b$, dot + 1)
    Else
        ip$ = b$
        fp$ = ""
    End If
    p2$ = "1"
    For i = Len(ip$) To 1 Step -1
        If Mid$(ip$, i, 1) = "1" Then build$ = mr$(build$, "+", p2$)
        p2$ = mr$(p2$, "*", "2")
    Next
    If fp$ <> "" Then
        build$ = build$ + "."
        p2$ = "1"
        For i = 1 To Len(fp$)
            p2$ = mr$(p2$, "/", "2")
            If Mid$(fp$, i, 1) = "1" Then build$ = mr$(build$, "+", p2$)
        Next
    End If
    Bin2Dec$ = sgn$ + build$
End Function


Function bigSQR$ (number$)
    Dim ip$, fp$, n$, calc$, remainder$, new$, test$
    Dim As Long dot, dp, i, pulldown, cal, digit, maxDec
    maxDec = 100

    ' divide number into integer part, ip$ and fraction part, fp$  , figure decimal places to left of decimal then even up front and back
    dot = InStr(number$, ".")
    If dot Then
        ip$ = _Trim$(Mid$(number$, 1, dot - 1))
        fp$ = Left$(_Trim$(Mid$(number$, dot + 1)) + String$(2 * maxDec, "0"), 2 * maxDec)
    Else
        ip$ = _Trim$(number$)
        If Len(ip$) Mod 2 = 1 Then ip$ = "0" + ip$
        fp$ = String$(2 * maxDec, "0")
    End If
    dp = Int((Len(ip$) + 1) / 2)
    If Len(ip$) Mod 2 = 1 Then ip$ = "0" + ip$
    n$ = ip$ + fp$
    For i = 1 To Len(n$) Step 2
        pulldown = Val(Mid$(n$, i, 2))
        If i = 1 Then
            cal = Int(Sqr(pulldown))
            remainder$ = _Trim$(Str$(pulldown - cal * cal))
            calc$ = _Trim$(Str$(cal))
        Else
            new$ = mr$("100", "*", remainder$)
            new$ = mr$(new$, "+", _Trim$(Str$(pulldown)))
            For digit = 9 To 0 Step -1
                'test$ = (20 * Val(calc$) + digit) * digit
                test$ = mr$("20", "*", calc$)
                test$ = mr$(test$, "+", _Trim$(Str$(digit)))
                test$ = mr$(test$, "*", _Trim$(Str$(digit)))
                If LTE(test$, new$) Then Exit For
            Next
            calc$ = calc$ + _Trim$(Str$(digit))
            remainder$ = mr$(new$, "-", test$)
        End If
    Next
    If dp Then
        calc$ = Mid$(calc$, 1, dp) + "." + Mid$(calc$, dp + 1)
    Else
        calc$ = "." + calc$
    End If
    bigSQR$ = calc$
End Function

' New stuff
Function Dec2Bin$ (Dec$)
    Dim sgn$, d$, ip$, fp$, b$, tp$
    Dim As Long dot, c
    If _Trim$(Left$(Dec$, 1)) = "-" Then
        sgn$ = "-": d$ = Mid$(_Trim$(Dec$), 2)
    Else
        sgn$ = "": d$ = _Trim$(Dec$)
    End If
    dot = InStr(d$, ".")
    If dot Then
        ip$ = Mid$(d$, 1, dot - 1): fp$ = Mid$(d$, dot)
    Else ' all integer
        ip$ = d$: fp$ = "."
    End If
    tp$ = "2"
    If LTE(tp$, ip$) Then
        While LTE(tp$, ip$)
            tp$ = mr$(tp$, "*", "2")
        Wend
    End If
    While LT("1", tp$)
        tp$ = mr$(tp$, "/", "2")
        If LTE(tp$, "1") Then b$ = b$ + ip$: Exit While
        If LT(ip$, tp$) Then
            b$ = b$ + "0"
        Else
            b$ = b$ + "1"
            ip$ = mr$(ip$, "-", tp$)
        End If
    Wend
    b$ = b$ + "." ' cross over point to fractions
    tp$ = "1"
    'Print "start fp$ "; fp$
    While c < 200 'And LT("0", fp$)
        tp$ = mr$(tp$, "/", "2")
        'If LT(fp$, tp$) Then ' for some reason LT is not working but < is
        If fp$ < tp$ Then ' for some reason LT is not working but < is
            b$ = b$ + "0"
        Else
            b$ = b$ + "1"
            fp$ = mr$(fp$, "-", tp$)
            If LTE(fp$, "0") Then Exit While
        End If
        c = c + 1
    Wend
    Dec2Bin$ = sgn$ + b$ ' b$ = build of 0,1 and .
End Function


' 2022-09-25 Use BigSQR$ it's way faster, no estimating!
' ==  String Math 2021-06-14 Procedure start here (aprox 412 LOC for copy/paste into your app) ==
Function sqrRoot$ (nmbr$)
    Dim n$, guess$, lastGuess$, other$, sum$, imaginary$, loopcnt
    If Left$(nmbr$, 1) = "-" Then 'handle neg numbers
        imaginary$ = "*i": n$ = Mid$(nmbr$, 2)
    Else
        imaginary$ = "": n$ = nmbr$
    End If
    guess$ = mr$(n$, "/", "2")
    other$ = n$
    Do
        loopcnt = loopcnt + 1
        If (Mid$(guess$, 1, 105) = Mid$(lastGuess$, 1, 105)) Then
            ' go past 100 matching digits for 100 digit precision
            sqrRoot$ = Mid$(other$, 1, 101) + imaginary$
            ' try other factor for guess$  sometimes it nails answer without all digits
            Exit Function
        Else
            lastGuess$ = guess$
            sum$ = mr$(guess$, "+", other$)
            guess$ = mr$(sum$, "/", "2")
            other$ = mr$(n$, "/", guess$)
        End If
    Loop
End Function

Function add$ (a$, b$) 'add 2 positive integers assume a and b are just numbers no - signs
    'set a and b numbers to same length and multiple of 18 so can take 18 digits at a time
    Dim As Long la, lb, m, g
    Dim sa As _Unsigned _Integer64, sb As _Unsigned _Integer64, co As _Unsigned _Integer64
    Dim fa$, fb$, t$, new$, result$
    la = Len(a$): lb = Len(b$)
    If la > lb Then m = Int(la / 18) + 1 Else m = Int(lb / 18) + 1
    fa$ = Right$(String$(m * 18, "0") + a$, m * 18)
    fb$ = Right$(String$(m * 18, "0") + b$, m * 18)

    'now taking 18 digits at a time Thanks Steve McNeill
    For g = 1 To m
        sa = Val(Mid$(fa$, (m - g) * 18 + 1, 18))
        sb = Val(Mid$(fb$, (m - g) * 18 + 1, 18))
        t$ = Right$(String$(36, "0") + _Trim$(Str$(sa + sb + co)), 36)
        co = Val(Mid$(t$, 1, 18))
        new$ = Mid$(t$, 19)
        result$ = new$ + result$
    Next
    If co Then result$ = Str$(co) + result$
    add$ = result$
End Function

' This is used in nInverse$ not by Mr$ because there it saves time!
Function subtr1$ (a$, b$)
    Dim As Long la, lb, lResult, i, ca, cb, w
    Dim result$, fa$, fb$

    la = Len(a$): lb = Len(b$)
    If la > lb Then lResult = la Else lResult = lb
    result$ = Space$(lResult)
    fa$ = result$: fb$ = result$
    Mid$(fa$, lResult - la + 1) = a$
    Mid$(fb$, lResult - lb + 1) = b$
    For i = lResult To 1 Step -1
        ca = Val(Mid$(fa$, i, 1))
        cb = Val(Mid$(fb$, i, 1))
        If cb > ca Then ' borrow 10
            Mid$(result$, i, 1) = Right$(Str$(10 + ca - cb), 1)
            w = i - 1
            While w > 0 And Mid$(fa$, w, 1) = "0"
                Mid$(fa$, w, 1) = "9"
                w = w - 1
            Wend
            Mid$(fa$, w, 1) = Right$(Str$(Val(Mid$(fa$, w, 1)) - 1), 1)
        Else
            Mid$(result$, i, 1) = Right$(Str$(ca - cb), 1)
        End If
    Next
    subtr1$ = result$
End Function

' 2021-06-08 fix up with new mr call that decides the sign and puts the greater number first
Function subtr$ (sum$, minus$) ' assume both numbers are positive all digits
    Dim As Long m, g, p
    Dim VB As _Unsigned _Integer64, vs As _Unsigned _Integer64, tenE18 As _Unsigned _Integer64
    Dim ts$, tm$, sign$, LG$, sm$, t$, result$

    ts$ = _Trim$(sum$): tm$ = _Trim$(minus$) ' fixed subtr$ 2021-06-05
    If trim0(ts$) = trim0$(tm$) Then subtr$ = "0": Exit Function 'proceed knowing not equal
    tenE18 = 1000000000000000000 'yes!!! no dang E's
    sign$ = ""
    m = Int(Len(ts$) / 18) + 1
    LG$ = Right$(String$(m * 18, "0") + ts$, m * 18)
    sm$ = Right$(String$(m * 18, "0") + tm$, m * 18)

    'now taking 18 digits at a time From Steve I learned we can do more than 1 digit at a time
    For g = 1 To m
        VB = Val(Mid$(LG$, m * 18 - g * 18 + 1, 18))
        vs = Val(Mid$(sm$, m * 18 - g * 18 + 1, 18))
        If vs > VB Then
            t$ = Right$(String$(18, "0") + _Trim$(Str$(tenE18 - vs + VB)), 18)
            p = (m - g) * 18
            While p > 0 And Mid$(LG$, p, 1) = "0"
                Mid$(LG$, p, 1) = "9"
                p = p - 1
            Wend
            If p > 0 Then Mid$(LG$, p, 1) = _Trim$(Str$(Val(Mid$(LG$, p, 1)) - 1))
        Else
            t$ = Right$(String$(18, "0") + _Trim$(Str$(VB - vs)), 18)
        End If
        result$ = t$ + result$
    Next
    subtr$ = result$
End Function

Function TrimLead0$ (s$) 'for treating strings as number (pos integers)
    Dim copys$
    Dim As Long i, find
    copys$ = _Trim$(s$) 'might as well remove spaces too
    i = 1: find = 0
    While i < Len(copys$) And Mid$(copys$, i, 1) = "0"
        i = i + 1: find = 1
    Wend
    If find = 1 Then copys$ = Mid$(copys$, i)
    If copys$ = "" Then TrimLead0$ = "0" Else TrimLead0$ = copys$
End Function

' catchy? mr$ for math regulator  cop$ = " + - * / " 1 of 4 basic arithmetics
' Fixed so that add and subtract have signs calc'd in Mr and correct call to add or subtract made
' with bigger minus smaller in subtr$() call
Function mr$ (a$, cop$, b$)
    Dim op$, ca$, cb$, aSgn$, bSgn$, postOp$, sgn$, rtn$
    Dim As Long adp, bdp, dp, lpop, aLTb

    op$ = _Trim$(cop$) 'save fixing each time
    ca$ = _Trim$(a$): cb$ = _Trim$(b$) 'make copies in case we change
    'strip signs and decimals
    If Left$(ca$, 1) = "-" Then
        aSgn$ = "-": ca$ = Mid$(ca$, 2)
    Else
        aSgn$ = ""
    End If
    dp = InStr(ca$, ".")
    If dp > 0 Then
        adp = Len(ca$) - dp
        ca$ = Mid$(ca$, 1, dp - 1) + Mid$(ca$, dp + 1)
    Else
        adp = 0
    End If
    If Left$(cb$, 1) = "-" Then
        bSgn$ = "-": cb$ = Mid$(cb$, 2)
    Else
        bSgn$ = ""
    End If
    dp = InStr(cb$, ".")
    If dp > 0 Then
        bdp = Len(cb$) - dp
        cb$ = Mid$(cb$, 1, dp - 1) + Mid$(cb$, dp + 1)
    Else
        bdp = 0
    End If
    If op$ = "+" Or op$ = "-" Or op$ = "/" Then 'add or subtr  even up strings on right of decimal
        'even up the right sides of decimals if any
        If adp > bdp Then dp = adp Else dp = bdp
        If adp < dp Then ca$ = ca$ + String$(dp - adp, "0")
        If bdp < dp Then cb$ = cb$ + String$(dp - bdp, "0")
    ElseIf op$ = "*" Then
        dp = adp + bdp
    End If
    If op$ = "*" Or op$ = "/" Then
        If aSgn$ = bSgn$ Then sgn$ = "" Else sgn$ = "-"
    End If

    'now according to signs and op$ call add$ or subtr$
    If op$ = "-" Then ' make it adding according to signs because that is done for + next!
        If bSgn$ = "-" Then bSgn$ = "" Else bSgn$ = "-" ' flip bSgn$ with op$
        op$ = "+" ' turn this over to + op already done! below
    End If
    If op$ = "+" Then
        If aSgn$ = bSgn$ Then 'really add
            postOp$ = add$(ca$, cb$)
            sgn$ = aSgn$
        ElseIf aSgn$ <> bSgn$ Then 'have a case of subtraction
            'but which is first and which is 2nd and should final sign be pos or neg
            If TrimLead0$(ca$) = TrimLead0(cb$) Then 'remove case a = b
                mr$ = "0": Exit Function
            Else
                aLTb = LTE(ca$, cb$)
                If aSgn$ = "-" Then
                    If aLTb Then ' b - a = pos
                        postOp$ = subtr$(cb$, ca$)
                        sgn$ = ""
                    Else '  a > b so a - sgn wins  - (a - b)
                        postOp$ = subtr$(ca$, cb$)
                        sgn$ = "-"
                    End If
                Else ' b has the - sgn
                    If aLTb Then ' result is -
                        postOp$ = subtr$(cb$, ca$)
                        sgn$ = "-"
                    Else ' result is pos
                        postOp$ = subtr$(ca$, cb$)
                        sgn$ = ""
                    End If
                End If
            End If
        End If
    ElseIf op$ = "*" Then
        postOp$ = mult$(ca$, cb$)
    ElseIf op$ = "/" Then
        postOp$ = divide$(ca$, cb$)
    End If ' which op
    If op$ <> "/" Then 'put dp back
        lpop = Len(postOp$) ' put decimal back if there is non zero stuff following it
        If Len(Mid$(postOp$, lpop - dp + 1)) Then ' fix 1 extra dot appearing in 10000! ?!
            If TrimLead0$(Mid$(postOp$, lpop - dp + 1)) <> "0" Then '  .0   or .00 or .000  ??
                postOp$ = Mid$(postOp$, 1, lpop - dp) + "." + Mid$(postOp$, lpop - dp + 1)
            End If
        End If
    End If
    rtn$ = trim0$(postOp$) 'trim lead 0's then tack on sign
    If rtn$ <> "0" Then mr$ = sgn$ + rtn$ Else mr$ = rtn$
End Function

Function divide$ (n$, d$) ' goal here is 100 digits precision not 100 digits past decimal
    Dim di$, ndi$
    Dim As Long nD
    If n$ = "0" Then divide$ = "0": Exit Function
    If d$ = "0" Then divide$ = "div 0": Exit Function
    If d$ = "1" Then divide$ = n$: Exit Function

    ' aha! found a bug when d$ gets really huge 100 is no where near enough!!!!
    ' 2021-06-03 fix by adding 100 to len(d$), plus have to go a little past 100 like 200
    di$ = Mid$(nInverse$(d$, Len(d$) + 200), 2) 'chop off decimal point after
    nD = Len(di$)
    ndi$ = mult$(n$, di$)
    ndi$ = Mid$(ndi$, 1, Len(ndi$) - nD) + "." + Right$(String$(nD, "0") + Right$(ndi$, nD), nD)
    divide$ = ndi$
End Function

' This uses Subtr1$ is Positive Integer only!
' DP = Decimal places = says when to quit if don't find perfect divisor before
Function nInverse$ (n$, DP As Long) 'assume decimal at very start of the string of digits returned
    Dim m$(1 To 9), si$, r$, outstr$, d$
    Dim i As Long
    For i = 1 To 9
        si$ = _Trim$(Str$(i))
        m$(i) = mult$(si$, n$)
    Next
    outstr$ = ""
    If n$ = "0" Then nInverse$ = "Div 0": Exit Function
    If n$ = "1" Then nInverse$ = "1": Exit Function
    outstr$ = "." 'everything else n > 1 is decimal 8/17
    r$ = "10"
    Do
        While LT(r$, n$) ' 2021-06-08 this should be strictly Less Than
            outstr$ = outstr$ + "0" '            add 0 to the  output string
            If Len(outstr$) = DP + 1 Then nInverse$ = outstr$: Exit Function 'DP length?
            r$ = r$ + "0"
        Wend
        For i = 9 To 1 Step -1
            If LTE(m$(i), r$) Then d$ = _Trim$(Str$(i)): Exit For
        Next
        outstr$ = outstr$ + d$
        If Len(outstr$) = DP + 1 Then nInverse$ = outstr$: Exit Function
        r$ = subtr1$(r$, mult$(d$, n$)) 'r = r -d*n    ' 2021-06-08 subtr1 works faster
        If TrimLead0$(r$) = "0" Then nInverse$ = outstr$: Exit Function ' add trimlead0$ 6/08
        r$ = r$ + "0" 'add another place
    Loop
End Function

Function mult$ (a$, b$) 'assume both positive integers prechecked as all digits strings
    Dim As Long la, lb, m, g, dp
    Dim As _Unsigned _Integer64 v18, sd, co
    Dim f18$, f1$, t$, build$, accum$

    If a$ = "0" Then mult$ = "0": Exit Function
    If b$ = "0" Then mult$ = "0": Exit Function
    If a$ = "1" Then mult$ = b$: Exit Function
    If b$ = "1" Then mult$ = a$: Exit Function
    'find the longer number and make it a mult of 18 to take 18 digits at a time from it
    la = Len(a$): lb = Len(b$)
    If la > lb Then
        m = Int(la / 18) + 1
        f18$ = Right$(String$(m * 18, "0") + a$, m * 18)
        f1$ = b$
    Else
        m = Int(lb / 18) + 1
        f18$ = Right$(String$(m * 18, "0") + b$, m * 18)
        f1$ = a$
    End If
    For dp = Len(f1$) To 1 Step -1 'dp = digit position of the f1$
        build$ = "" 'line builder
        co = 0
        'now taking 18 digits at a time Thanks Steve McNeill
        For g = 1 To m
            v18 = Val(Mid$(f18$, (m - g) * 18 + 1, 18))
            sd = Val(Mid$(f1$, dp, 1))
            t$ = Right$(String$(19, "0") + _Trim$(Str$(v18 * sd + co)), 19)
            co = Val(Mid$(t$, 1, 1))
            build$ = Mid$(t$, 2) + build$
        Next g
        If co Then build$ = _Trim$(Str$(co)) + build$
        If dp = Len(f1$) Then
            accum$ = build$
        Else
            accum$ = add$(accum$, build$ + String$(Len(f1$) - dp, "0"))
        End If
    Next dp
    mult$ = accum$
End Function

'this function needs TrimLead0$(s$)   ' dang I can't remember if a$ and b$ can have decimals or not
Function LTE (a$, b$) ' a$ Less Than or Equal b$  comparison of 2 strings
    Dim ca$, cb$
    Dim As Long la, lb, i
    ca$ = TrimLead0$(a$): cb$ = TrimLead0(b$)
    la = Len(ca$): lb = Len(cb$)
    If ca$ = cb$ Then
        LTE = -1
    ElseIf la < lb Then ' a is smaller
        LTE = -1
    ElseIf la > lb Then ' a is bigger
        LTE = 0
    ElseIf la = lb Then ' equal lengths
        For i = 1 To Len(ca$)
            If Val(Mid$(ca$, i, 1)) > Val(Mid$(cb$, i, 1)) Then
                LTE = 0: Exit Function
            ElseIf Val(Mid$(ca$, i, 1)) < Val(Mid$(cb$, i, 1)) Then
                LTE = -1: Exit Function
            End If
        Next
    End If
End Function

'need this for ninverse faster than subtr$ for sign
Function LT (a$, b$) ' a$ Less Than or Equal b$  comparison of 2 strings
    Dim ca$, cb$
    Dim As Long la, lb, i
    ca$ = TrimLead0$(a$): cb$ = TrimLead0(b$)
    la = Len(ca$): lb = Len(cb$)
    If la < lb Then ' a is smaller
        LT = -1
    ElseIf la > lb Then ' a is bigger
        LT = 0
    ElseIf la = lb Then ' equal lengths
        For i = 1 To Len(ca$)
            If Val(Mid$(ca$, i, 1)) > Val(Mid$(cb$, i, 1)) Then
                LT = 0: Exit Function
            ElseIf Val(Mid$(ca$, i, 1)) < Val(Mid$(cb$, i, 1)) Then
                LT = -1: Exit Function
            End If
        Next
    End If
End Function

Function TrimTail0$ (s$)
    Dim copys$
    Dim As Long dp, i, find
    copys$ = _Trim$(s$) 'might as well remove spaces too
    TrimTail0$ = copys$
    dp = InStr(copys$, ".")
    If dp > 0 Then
        i = Len(copys$): find = 0
        While i > dp And Mid$(copys$, i, 1) = "0"
            i = i - 1: find = 1
        Wend
        If find = 1 Then
            If i = dp Then
                TrimTail0$ = Mid$(copys$, 1, dp - 1)
            Else
                TrimTail0$ = Mid$(copys$, 1, i)
            End If
        End If
    End If
End Function

Function trim0$ (s$)
    Dim cs$, si$
    cs$ = s$
    si$ = Left$(cs$, 1)
    If si$ = "-" Then cs$ = Mid$(cs$, 2)
    cs$ = TrimLead0$(cs$)
    cs$ = TrimTail0$(cs$)
    If Right$(cs$, 1) = "." Then cs$ = Mid$(cs$, 1, Len(cs$) - 1)
    If si$ = "-" Then trim0$ = si$ + cs$ Else trim0$ = cs$
End Function

' for displaying truncated numbers say to 60 digits
Function showDP$ (num$, nDP As Long)
    Dim cNum$
    Dim As Long dp, d, i
    cNum$ = num$ 'since num$ could get changed
    showDP$ = num$
    dp = InStr(num$, ".")
    If dp > 0 Then
        If Len(Mid$(cNum$, dp + 1)) > nDP Then
            d = Val(Mid$(cNum$, dp + nDP + 1, 1))
            If d > 4 Then
                cNum$ = "0" + cNum$ ' tack on another 0 just in case 9's all the way to left
                dp = dp + 1
                i = dp + nDP
                While Mid$(cNum$, i, 1) = "9" Or Mid$(cNum$, i, 1) = "."
                    If Mid$(cNum$, i, 1) = "9" Then
                        Mid$(cNum$, i, 1) = "0"
                    End If
                    i = i - 1
                Wend
                Mid$(cNum$, i, 1) = _Trim$(Str$(Val(Mid$(cNum$, i, 1)) + 1)) 'last non 9 digit
                cNum$ = Mid$(cNum$, 1, dp + nDP) 'chop it
                showDP$ = trim0$(cNum$)
            Else
                showDP$ = Mid$(cNum$, 1, dp + nDP)
            End If
        End If
    End If
End Function
b = b + ...
Reply
#2
So this converts binary to decimal and checks conversion back. Since it uses string math, what was your reason for limiting to 100-digits?

As far as powers go. Easy to do integers. A batch to do decimals by approximation methods. You would need some either documented rounding formulas to straighten them out or a take-forever checking / approximation method to iron out the dependencies. Since powers and roots are inversely related, I'm considering using my nth root calculator as a way to do decimal powers.

Side note: I think we are about even up on line numbers to accomplish this stuff. So for anyone who thinks string math is "simple" and could be done in one or two hundred lines of code, guess again.

Pete
Reply
#3
100 digits is enough for Proof of Concept for Binary Conversions and BigSQR's both.

I think I am doing 100 digits with division as well, unless you bypass Mr$ and do NInverse$ directly.

I confess I don't remember if LTE (<=) and LT (<) for number strings work with decimals or not... I suspect NOT.

So I might have to rework them to handle at least decimals maybe negs too.

I know there was a reason you can't use <= and < for number strings but don't remember what goes wrong.
b = b + ...
Reply
#4
That's what I thought, developer defined limit.

Although in theory string math seems unlimited, it is not practical to design a system it that way. For instance, I use routines limited by loops using _integer64, and use integer math with that variable type to handle groups of numbers. For iterations, that limits my system to whatever 9,223,372,036,854,775,807 gets me in string results. Also, at some point, even with hybrid string-math-numeric model I created, there comes a point where the user is simply waiting too long for results. My goal is to produce up to 1,000 digits in under two minutes for any operation. It only takes a few seconds with straight arithmetic calculations, but complex powers and roots take longer.

Pete
Reply
#5
nice work, bplus, beat him at his own game!
Reply
#6
Not trying to beat Pete, we are at slightly different purposes and interesting as heck to compare approaches.

BTW when I am talking about a Power function I mean a number raised to any Real number including .5 or 1/2 AKA Square Root and .333... or 1/3 AKA Cube root.
The "roots" are special cases of powers in general.
b = b + ...
Reply
#7
(09-29-2022, 09:26 AM)bplus Wrote: Not trying to beat Pete, we are at slightly different purposes and interesting as heck to compare approaches.

BTW when I am talking about a Power function I mean a number raised to any Real number including .5 or 1/2 AKA Square Root and .333... or 1/3 AKA Cube root.
The "roots" are special cases of powers in general.

@bplus

I updated my work in this area, also shows decimal point now: https://qb64phoenix.com/forum/showthread...25#pid7225

You can try things like 8.5 root 2.2 or 8.5^2.2, etc.

Pete
Reply
#8
OK here is x^y calculated by way of e^(y*ln(x)) with string math routines for eToTheX$(x$) and nLn$(x$) both used for power$(x, y)

Code: (Select All)
Option _Explicit
_Title "String Math Powers 2022-09-22" ' b+ try to do powers with string math
' directly from "String Math 2021-06-14" ' b+ from SM2 (2021 June) a bunch of experiments to fix and improve speeds.
' June 2021 fix some old String Math procedures, better nInverse with new LT frunction, remove experimental procedures.
' Now with decent sqrRoot it works independent of Mr$() = Math Regulator that handles signs and decimals and calls to
' add$(), subtr$, mult$, divide$ (100 significant digits),  add$(), subtr$, mult$ are exact!
' If you need higher precsion divide, I recommend use nInverse on denominator (integer)
' then add sign and decimal and mult$() that number with numerator to get divsion answer in higher precision than 100.
' (See how Mr$() handles division and just call nInverse$ with what precision you need.)
' The final function showDP$() is for displaying these number to a set amount of Decimal Places.

' The main code is sampler of tests performed with these functions.
' 2022-09-22 a little fix to MR$ for Function change versions QB64 v2.0+
' Attempt to do Powers with SQRs of 2 Multipliers
' needs to be able to convert a number into a binary String
' might also need a Table setup for nested SQR's of 2
' needs a decent BigSQR$ string function for SQR
' 2022-09-25 this is one frustration after another LT does not work for strings??? but < does?
' try some more with BigSQR concentrate on Integer part first, just get that right
' 2022-09-26 Bin2Dec$ Function seems OK

' 2022-09-30 current status using new nLn$ for natural logs in string math calculation
' and eToTheX$ for raising e to some x power, power$ then is x^y = e^(y*ln(x)) in String math functions.
' Started using ShowDP$ to eliminate excess digits so calculations don't hang up all day long...

$Console:Only

Randomize Timer

'Dim As Double i ' testing Dec2Bin$
'Dim p2$, x$, sum$
'p2$ = "1"
'For i = 1 To 50
'    p2$ = mr$(p2$, "/", "2")
'    x$ = mr$(x$, "+", "1")
'    sum$ = mr$(x$, "+", p2$)
'    Print sum$, Dec2Bin$(sum$)
'    'Sleep
'Next
'Print: Print " Square Roots:"
'Dim b$, intger$
'For i = 1 To 50
'    b$ = Str$(i + 1 / (2 ^ i))
'    Print b$, bigSQR$(b$)
'Next
'intger$ = "10000000000000000000000000000000000000000000000000000000000000000"
'Print: Print "Bonus SQR of "; intger$; " Len  = "; Len(intger$); " is:"
'b$ = bigSQR$(intger$)
'Print b$, " Len Integer Part ="; Len(Mid$(b$, 1, InStr(b$, ".") - 1))
'intger$ = "100000000000000000000000000000000000000000000000000000000000000000"
'Print: Print "Bonus SQR of "; intger$; " Len = "; Len(intger$); " is:"
'b$ = bigSQR$(intger$)
'Print b$, " Len Integer Part ="; Len(Mid$(b$, 1, InStr(b$, ".") - 1))
'Print: Print " Square Roots:"

'  ============ For comparison this was the old routine
'Print: Print "Square Roots the old way of estimation:"
'For i = 1 To 50
'    b$ = Str$(i + 1 / (2 ^ i))
'    Print b$, sqrRoot$(b$)
'Next
'intger$ = "10000000000000000000000000000000000000000000000000000000000000000"
'Print: Print "Bonus SQR of "; intger$; " Len  = "; Len(intger$); " is:"
'b$ = sqrRoot$(intger$)
'Print b$, " Len Integer Part ="; Len(b$)
'intger$ = "100000000000000000000000000000000000000000000000000000000000000000"
'Print: Print "Bonus SQR of "; intger$; " Len = "; Len(intger$); " is:"
'b$ = sqrRoot$(intger$)
'Print b$, " Len Integer Part ="; Len(Mid$(b$, 1, InStr(b$, ".") - 1))
' ============================================================================

' OK now test the new Power$ routine
Print showDP$(power$("8", mr$("1", "/", "1025")), 30)


'Dim test$, ans$
'Do
'    Input "Enter a Binary with/without - sgn or decimal "; test$
'    ans$ = Bin2Dec$(test$)
'    Print "Decimal is: "; ans$
'    Print "Check conversion back: "; Dec2Bin$(ans$)
'Loop Until test$ = ""


Function power$ (x$, exponent$) ' this power is getting bogged down by tons of digits not making significant change to final value
    Dim step1$
    step1$ = mr$(exponent$, "*", nLn$(x$))
    step1$ = showDP$(step1$, 100) ' cut x$ down to 100 places
    Print step1$
    power$ = eToTheX$(step1$)
End Function

Function nLn$ (x$)
    Dim term1$, term2$, term$, xbase$, coef$, sum$, newsum$
    Dim As Long k, count, kPower
    newsum$ = "0"
    term1$ = mr$(x$, "-", "1")
    term2$ = mr$(x$, "+", "1")
    term$ = mr$(term1$, "/", term2$)
    xbase$ = "1"
    Do
        sum$ = newsum$
        'Print newsum$
        'coef$ = 2 / (2 * k + 1)
        coef$ = mr$("2", "/", _Trim$(Str$(2 * k + 1)))
        kPower = 2 * k + 1
        While count < kPower
            xbase$ = showDP$(mr$(xbase$, "*", term$), 100)
            count = count + 1
        Wend
        newsum$ = showDP$(mr$(coef$, "*", xbase$), 100)
        newsum$ = mr$(sum$, "+", newsum$)
        k = k + 1
    Loop Until (sum$ = newsum$) Or (kPower > 2500)
    nLn$ = newsum$
End Function

Function eToTheX$ (x$)
    Dim sum$, t1$, t2$
    Dim As Long n, i
    sum$ = "1": n = 100
    For i = n - 1 To 1 Step -1
        'sum$ = "1" + x$ * sum / i
        t1$ = mr$(sum$, "/", _Trim$(Str$(i)))
        t2$ = mr$(x$, "*", t1$)
        sum$ = mr$("1", "+", t2$)
        sum$ = showDP$(sum$, 100) ' trim down all the digits building up
        'Print showDP$(sum$, 20)
    Next
    eToTheX$ = sum$
End Function

' x to the power of pow
Function BinPower$ (xx$, pow$) '                    so far this sucks, decimal is lost and digits only good for about 10 places 10% of dp in SQR(2)'s
    Dim build$, ip$, fp$, x$, bs$, runningXSQR$
    Dim As Long dot, i
    x$ = _Trim$(xx$)
    dot = InStr(pow$, ".")
    If dot Then
        ip$ = Mid$(pow$, 1, dot - 1)
        fp$ = Mid$(pow$, dot) ' keep dot
    Else
        ip$ = pow$
        fp$ = ""
    End If
    'integer part or power
    build$ = "1"
    If ip$ <> "" Then
        While LTE("0", ip$)
            build$ = mr$(build$, "*", x$)
            ip$ = mr$(ip$, "-", "1")
        Wend
    End If
    If fp$ = "" Or fp$ = "." Then BinPower$ = build$: Exit Function
    build$ = build$ + "."
    'now for the fraction part convert decimal to Binary
    bs$ = Dec2Bin$(fp$)
    'at moment we haven't taken any sqr of x
    runningXSQR$ = mr$(x$, "*", x$)
    'run through all the 0's and 1's in the bianry expansion of the fraction part of the power float
    For i = 1 To Len(bs$)
        'this is the matching sqr of the sqr of the sqr... of x
        runningXSQR$ = bigSQR$(runningXSQR$)
        'for every 1 in the expansion, multiple our build with the running sqr of ... sqr of x
        If Mid$(bs$, i, 1) = "1" Then build$ = mr$(build$, "*", runningXSQR$)
    Next
    'our build should be a estimate or x to power of pow
    BinPower$ = build$
End Function

Function Bin2Dec$ (bn$) ' bn$ is binary string number with possible neg sign and decimal
    Dim b$, sgn$, ip$, fp$, p2$, build$
    Dim As Long dot, i
    b$ = _Trim$(bn$)
    If Left$(b$, 1) = "-" Then sgn$ = "-": b$ = Mid$(b$, 2) Else sgn$ = ""
    dot = InStr(b$, ".")
    If dot Then
        ip$ = Mid$(b$, 1, dot - 1)
        fp$ = Mid$(b$, dot + 1)
    Else
        ip$ = b$
        fp$ = ""
    End If
    p2$ = "1"
    For i = Len(ip$) To 1 Step -1
        If Mid$(ip$, i, 1) = "1" Then build$ = mr$(build$, "+", p2$)
        p2$ = mr$(p2$, "*", "2")
    Next
    If fp$ <> "" Then
        build$ = build$ + "."
        p2$ = "1"
        For i = 1 To Len(fp$)
            p2$ = mr$(p2$, "/", "2")
            If Mid$(fp$, i, 1) = "1" Then build$ = mr$(build$, "+", p2$)
        Next
    End If
    Bin2Dec$ = sgn$ + build$
End Function


Function bigSQR$ (number$)
    Dim ip$, fp$, n$, calc$, remainder$, new$, test$
    Dim As Long dot, dp, i, pulldown, cal, digit, maxDec
    maxDec = 100

    ' divide number into integer part, ip$ and fraction part, fp$  , figure decimal places to left of decimal then even up front and back
    dot = InStr(number$, ".")
    If dot Then
        ip$ = _Trim$(Mid$(number$, 1, dot - 1))
        fp$ = Left$(_Trim$(Mid$(number$, dot + 1)) + String$(2 * maxDec, "0"), 2 * maxDec)
    Else
        ip$ = _Trim$(number$)
        If Len(ip$) Mod 2 = 1 Then ip$ = "0" + ip$
        fp$ = String$(2 * maxDec, "0")
    End If
    dp = Int((Len(ip$) + 1) / 2)
    If Len(ip$) Mod 2 = 1 Then ip$ = "0" + ip$
    n$ = ip$ + fp$
    For i = 1 To Len(n$) Step 2
        pulldown = Val(Mid$(n$, i, 2))
        If i = 1 Then
            cal = Int(Sqr(pulldown))
            remainder$ = _Trim$(Str$(pulldown - cal * cal))
            calc$ = _Trim$(Str$(cal))
        Else
            new$ = mr$("100", "*", remainder$)
            new$ = mr$(new$, "+", _Trim$(Str$(pulldown)))
            For digit = 9 To 0 Step -1
                'test$ = (20 * Val(calc$) + digit) * digit
                test$ = mr$("20", "*", calc$)
                test$ = mr$(test$, "+", _Trim$(Str$(digit)))
                test$ = mr$(test$, "*", _Trim$(Str$(digit)))
                If LTE(test$, new$) Then Exit For
            Next
            calc$ = calc$ + _Trim$(Str$(digit))
            remainder$ = mr$(new$, "-", test$)
        End If
    Next
    If dp Then
        calc$ = Mid$(calc$, 1, dp) + "." + Mid$(calc$, dp + 1)
    Else
        calc$ = "." + calc$
    End If
    bigSQR$ = calc$
End Function

' New stuff
Function Dec2Bin$ (Dec$)
    Dim sgn$, d$, ip$, fp$, b$, tp$
    Dim As Long dot, c
    If _Trim$(Left$(Dec$, 1)) = "-" Then
        sgn$ = "-": d$ = Mid$(_Trim$(Dec$), 2)
    Else
        sgn$ = "": d$ = _Trim$(Dec$)
    End If
    dot = InStr(d$, ".")
    If dot Then
        ip$ = Mid$(d$, 1, dot - 1): fp$ = Mid$(d$, dot)
    Else ' all integer
        ip$ = d$: fp$ = "."
    End If
    tp$ = "2"
    If LTE(tp$, ip$) Then
        While LTE(tp$, ip$)
            tp$ = mr$(tp$, "*", "2")
        Wend
    End If
    While LT("1", tp$)
        tp$ = mr$(tp$, "/", "2")
        If LTE(tp$, "1") Then b$ = b$ + ip$: Exit While
        If LT(ip$, tp$) Then
            b$ = b$ + "0"
        Else
            b$ = b$ + "1"
            ip$ = mr$(ip$, "-", tp$)
        End If
    Wend
    b$ = b$ + "." ' cross over point to fractions
    tp$ = "1"
    'Print "start fp$ "; fp$
    While c < 200 'And LT("0", fp$)
        tp$ = mr$(tp$, "/", "2")
        'If LT(fp$, tp$) Then ' for some reason LT is not working but < is
        If fp$ < tp$ Then ' for some reason LT is not working but < is
            b$ = b$ + "0"
        Else
            b$ = b$ + "1"
            fp$ = mr$(fp$, "-", tp$)
            If LTE(fp$, "0") Then Exit While
        End If
        c = c + 1
    Wend
    Dec2Bin$ = sgn$ + b$ ' b$ = build of 0,1 and .
End Function

Function add$ (a$, b$) 'add 2 positive integers assume a and b are just numbers no - signs
    'set a and b numbers to same length and multiple of 18 so can take 18 digits at a time
    Dim As Long la, lb, m, g
    Dim sa As _Unsigned _Integer64, sb As _Unsigned _Integer64, co As _Unsigned _Integer64
    Dim fa$, fb$, t$, new$, result$
    la = Len(a$): lb = Len(b$)
    If la > lb Then m = Int(la / 18) + 1 Else m = Int(lb / 18) + 1
    fa$ = Right$(String$(m * 18, "0") + a$, m * 18)
    fb$ = Right$(String$(m * 18, "0") + b$, m * 18)

    'now taking 18 digits at a time Thanks Steve McNeill
    For g = 1 To m
        sa = Val(Mid$(fa$, (m - g) * 18 + 1, 18))
        sb = Val(Mid$(fb$, (m - g) * 18 + 1, 18))
        t$ = Right$(String$(36, "0") + _Trim$(Str$(sa + sb + co)), 36)
        co = Val(Mid$(t$, 1, 18))
        new$ = Mid$(t$, 19)
        result$ = new$ + result$
    Next
    If co Then result$ = Str$(co) + result$
    add$ = result$
End Function

' This is used in nInverse$ not by Mr$ because there it saves time!
Function subtr1$ (a$, b$)
    Dim As Long la, lb, lResult, i, ca, cb, w
    Dim result$, fa$, fb$

    la = Len(a$): lb = Len(b$)
    If la > lb Then lResult = la Else lResult = lb
    result$ = Space$(lResult)
    fa$ = result$: fb$ = result$
    Mid$(fa$, lResult - la + 1) = a$
    Mid$(fb$, lResult - lb + 1) = b$
    For i = lResult To 1 Step -1
        ca = Val(Mid$(fa$, i, 1))
        cb = Val(Mid$(fb$, i, 1))
        If cb > ca Then ' borrow 10
            Mid$(result$, i, 1) = Right$(Str$(10 + ca - cb), 1)
            w = i - 1
            While w > 0 And Mid$(fa$, w, 1) = "0"
                Mid$(fa$, w, 1) = "9"
                w = w - 1
            Wend
            Mid$(fa$, w, 1) = Right$(Str$(Val(Mid$(fa$, w, 1)) - 1), 1)
        Else
            Mid$(result$, i, 1) = Right$(Str$(ca - cb), 1)
        End If
    Next
    subtr1$ = result$
End Function

' 2021-06-08 fix up with new mr call that decides the sign and puts the greater number first
Function subtr$ (sum$, minus$) ' assume both numbers are positive all digits
    Dim As Long m, g, p
    Dim VB As _Unsigned _Integer64, vs As _Unsigned _Integer64, tenE18 As _Unsigned _Integer64
    Dim ts$, tm$, sign$, LG$, sm$, t$, result$

    ts$ = _Trim$(sum$): tm$ = _Trim$(minus$) ' fixed subtr$ 2021-06-05
    If trim0(ts$) = trim0$(tm$) Then subtr$ = "0": Exit Function 'proceed knowing not equal
    tenE18 = 1000000000000000000 'yes!!! no dang E's
    sign$ = ""
    m = Int(Len(ts$) / 18) + 1
    LG$ = Right$(String$(m * 18, "0") + ts$, m * 18)
    sm$ = Right$(String$(m * 18, "0") + tm$, m * 18)

    'now taking 18 digits at a time From Steve I learned we can do more than 1 digit at a time
    For g = 1 To m
        VB = Val(Mid$(LG$, m * 18 - g * 18 + 1, 18))
        vs = Val(Mid$(sm$, m * 18 - g * 18 + 1, 18))
        If vs > VB Then
            t$ = Right$(String$(18, "0") + _Trim$(Str$(tenE18 - vs + VB)), 18)
            p = (m - g) * 18
            While p > 0 And Mid$(LG$, p, 1) = "0"
                Mid$(LG$, p, 1) = "9"
                p = p - 1
            Wend
            If p > 0 Then Mid$(LG$, p, 1) = _Trim$(Str$(Val(Mid$(LG$, p, 1)) - 1))
        Else
            t$ = Right$(String$(18, "0") + _Trim$(Str$(VB - vs)), 18)
        End If
        result$ = t$ + result$
    Next
    subtr$ = result$
End Function

Function TrimLead0$ (s$) 'for treating strings as number (pos integers)
    Dim copys$
    Dim As Long i, find
    copys$ = _Trim$(s$) 'might as well remove spaces too
    i = 1: find = 0
    While i < Len(copys$) And Mid$(copys$, i, 1) = "0"
        i = i + 1: find = 1
    Wend
    If find = 1 Then copys$ = Mid$(copys$, i)
    If copys$ = "" Then TrimLead0$ = "0" Else TrimLead0$ = copys$
End Function

' catchy? mr$ for math regulator  cop$ = " + - * / " 1 of 4 basic arithmetics
' Fixed so that add and subtract have signs calc'd in Mr and correct call to add or subtract made
' with bigger minus smaller in subtr$() call
Function mr$ (a$, cop$, b$)
    Dim op$, ca$, cb$, aSgn$, bSgn$, postOp$, sgn$, rtn$
    Dim As Long adp, bdp, dp, lpop, aLTb

    op$ = _Trim$(cop$) 'save fixing each time
    ca$ = _Trim$(a$): cb$ = _Trim$(b$) 'make copies in case we change
    'strip signs and decimals
    If Left$(ca$, 1) = "-" Then
        aSgn$ = "-": ca$ = Mid$(ca$, 2)
    Else
        aSgn$ = ""
    End If
    dp = InStr(ca$, ".")
    If dp > 0 Then
        adp = Len(ca$) - dp
        ca$ = Mid$(ca$, 1, dp - 1) + Mid$(ca$, dp + 1)
    Else
        adp = 0
    End If
    If Left$(cb$, 1) = "-" Then
        bSgn$ = "-": cb$ = Mid$(cb$, 2)
    Else
        bSgn$ = ""
    End If
    dp = InStr(cb$, ".")
    If dp > 0 Then
        bdp = Len(cb$) - dp
        cb$ = Mid$(cb$, 1, dp - 1) + Mid$(cb$, dp + 1)
    Else
        bdp = 0
    End If
    If op$ = "+" Or op$ = "-" Or op$ = "/" Then 'add or subtr  even up strings on right of decimal
        'even up the right sides of decimals if any
        If adp > bdp Then dp = adp Else dp = bdp
        If adp < dp Then ca$ = ca$ + String$(dp - adp, "0")
        If bdp < dp Then cb$ = cb$ + String$(dp - bdp, "0")
    ElseIf op$ = "*" Then
        dp = adp + bdp
    End If
    If op$ = "*" Or op$ = "/" Then
        If aSgn$ = bSgn$ Then sgn$ = "" Else sgn$ = "-"
    End If

    'now according to signs and op$ call add$ or subtr$
    If op$ = "-" Then ' make it adding according to signs because that is done for + next!
        If bSgn$ = "-" Then bSgn$ = "" Else bSgn$ = "-" ' flip bSgn$ with op$
        op$ = "+" ' turn this over to + op already done! below
    End If
    If op$ = "+" Then
        If aSgn$ = bSgn$ Then 'really add
            postOp$ = add$(ca$, cb$)
            sgn$ = aSgn$
        ElseIf aSgn$ <> bSgn$ Then 'have a case of subtraction
            'but which is first and which is 2nd and should final sign be pos or neg
            If TrimLead0$(ca$) = TrimLead0(cb$) Then 'remove case a = b
                mr$ = "0": Exit Function
            Else
                aLTb = LTE(ca$, cb$)
                If aSgn$ = "-" Then
                    If aLTb Then ' b - a = pos
                        postOp$ = subtr$(cb$, ca$)
                        sgn$ = ""
                    Else '  a > b so a - sgn wins  - (a - b)
                        postOp$ = subtr$(ca$, cb$)
                        sgn$ = "-"
                    End If
                Else ' b has the - sgn
                    If aLTb Then ' result is -
                        postOp$ = subtr$(cb$, ca$)
                        sgn$ = "-"
                    Else ' result is pos
                        postOp$ = subtr$(ca$, cb$)
                        sgn$ = ""
                    End If
                End If
            End If
        End If
    ElseIf op$ = "*" Then
        postOp$ = mult$(ca$, cb$)
    ElseIf op$ = "/" Then
        postOp$ = divide$(ca$, cb$)
    End If ' which op
    If op$ <> "/" Then 'put dp back
        lpop = Len(postOp$) ' put decimal back if there is non zero stuff following it
        If Len(Mid$(postOp$, lpop - dp + 1)) Then ' fix 1 extra dot appearing in 10000! ?!
            If TrimLead0$(Mid$(postOp$, lpop - dp + 1)) <> "0" Then '  .0   or .00 or .000  ??
                postOp$ = Mid$(postOp$, 1, lpop - dp) + "." + Mid$(postOp$, lpop - dp + 1)
            End If
        End If
    End If
    rtn$ = trim0$(postOp$) 'trim lead 0's then tack on sign
    If rtn$ <> "0" Then mr$ = sgn$ + rtn$ Else mr$ = rtn$
End Function

Function divide$ (n$, d$) ' goal here is 100 digits precision not 100 digits past decimal
    Dim di$, ndi$
    Dim As Long nD
    If n$ = "0" Then divide$ = "0": Exit Function
    If d$ = "0" Then divide$ = "div 0": Exit Function
    If d$ = "1" Then divide$ = n$: Exit Function

    ' aha! found a bug when d$ gets really huge 100 is no where near enough!!!!
    ' 2021-06-03 fix by adding 100 to len(d$), plus have to go a little past 100 like 200
    di$ = Mid$(nInverse$(d$, Len(d$) + 200), 2) 'chop off decimal point after
    nD = Len(di$)
    ndi$ = mult$(n$, di$)
    ndi$ = Mid$(ndi$, 1, Len(ndi$) - nD) + "." + Right$(String$(nD, "0") + Right$(ndi$, nD), nD)
    divide$ = ndi$
End Function

' This uses Subtr1$ is Positive Integer only!
' DP = Decimal places = says when to quit if don't find perfect divisor before
Function nInverse$ (n$, DP As Long) 'assume decimal at very start of the string of digits returned
    Dim m$(1 To 9), si$, r$, outstr$, d$
    Dim i As Long
    For i = 1 To 9
        si$ = _Trim$(Str$(i))
        m$(i) = mult$(si$, n$)
    Next
    outstr$ = ""
    If n$ = "0" Then nInverse$ = "Div 0": Exit Function
    If n$ = "1" Then nInverse$ = "1": Exit Function
    outstr$ = "." 'everything else n > 1 is decimal 8/17
    r$ = "10"
    Do
        While LT(r$, n$) ' 2021-06-08 this should be strictly Less Than
            outstr$ = outstr$ + "0" '            add 0 to the  output string
            If Len(outstr$) = DP + 1 Then nInverse$ = outstr$: Exit Function 'DP length?
            r$ = r$ + "0"
        Wend
        For i = 9 To 1 Step -1
            If LTE(m$(i), r$) Then d$ = _Trim$(Str$(i)): Exit For
        Next
        outstr$ = outstr$ + d$
        If Len(outstr$) = DP + 1 Then nInverse$ = outstr$: Exit Function
        r$ = subtr1$(r$, mult$(d$, n$)) 'r = r -d*n    ' 2021-06-08 subtr1 works faster
        If TrimLead0$(r$) = "0" Then nInverse$ = outstr$: Exit Function ' add trimlead0$ 6/08
        r$ = r$ + "0" 'add another place
    Loop
End Function

Function mult$ (a$, b$) 'assume both positive integers prechecked as all digits strings
    Dim As Long la, lb, m, g, dp
    Dim As _Unsigned _Integer64 v18, sd, co
    Dim f18$, f1$, t$, build$, accum$

    If a$ = "0" Then mult$ = "0": Exit Function
    If b$ = "0" Then mult$ = "0": Exit Function
    If a$ = "1" Then mult$ = b$: Exit Function
    If b$ = "1" Then mult$ = a$: Exit Function
    'find the longer number and make it a mult of 18 to take 18 digits at a time from it
    la = Len(a$): lb = Len(b$)
    If la > lb Then
        m = Int(la / 18) + 1
        f18$ = Right$(String$(m * 18, "0") + a$, m * 18)
        f1$ = b$
    Else
        m = Int(lb / 18) + 1
        f18$ = Right$(String$(m * 18, "0") + b$, m * 18)
        f1$ = a$
    End If
    For dp = Len(f1$) To 1 Step -1 'dp = digit position of the f1$
        build$ = "" 'line builder
        co = 0
        'now taking 18 digits at a time Thanks Steve McNeill
        For g = 1 To m
            v18 = Val(Mid$(f18$, (m - g) * 18 + 1, 18))
            sd = Val(Mid$(f1$, dp, 1))
            t$ = Right$(String$(19, "0") + _Trim$(Str$(v18 * sd + co)), 19)
            co = Val(Mid$(t$, 1, 1))
            build$ = Mid$(t$, 2) + build$
        Next g
        If co Then build$ = _Trim$(Str$(co)) + build$
        If dp = Len(f1$) Then
            accum$ = build$
        Else
            accum$ = add$(accum$, build$ + String$(Len(f1$) - dp, "0"))
        End If
    Next dp
    mult$ = accum$
End Function

'this function needs TrimLead0$(s$)   ' dang I can't remember if a$ and b$ can have decimals or not
Function LTE (a$, b$) ' a$ Less Than or Equal b$  comparison of 2 strings
    Dim ca$, cb$
    Dim As Long la, lb, i
    ca$ = TrimLead0$(a$): cb$ = TrimLead0(b$)
    la = Len(ca$): lb = Len(cb$)
    If ca$ = cb$ Then
        LTE = -1
    ElseIf la < lb Then ' a is smaller
        LTE = -1
    ElseIf la > lb Then ' a is bigger
        LTE = 0
    ElseIf la = lb Then ' equal lengths
        For i = 1 To Len(ca$)
            If Val(Mid$(ca$, i, 1)) > Val(Mid$(cb$, i, 1)) Then
                LTE = 0: Exit Function
            ElseIf Val(Mid$(ca$, i, 1)) < Val(Mid$(cb$, i, 1)) Then
                LTE = -1: Exit Function
            End If
        Next
    End If
End Function

'need this for ninverse faster than subtr$ for sign
Function LT (a$, b$) ' a$ Less Than or Equal b$  comparison of 2 strings
    Dim ca$, cb$
    Dim As Long la, lb, i
    ca$ = TrimLead0$(a$): cb$ = TrimLead0(b$)
    la = Len(ca$): lb = Len(cb$)
    If la < lb Then ' a is smaller
        LT = -1
    ElseIf la > lb Then ' a is bigger
        LT = 0
    ElseIf la = lb Then ' equal lengths
        For i = 1 To Len(ca$)
            If Val(Mid$(ca$, i, 1)) > Val(Mid$(cb$, i, 1)) Then
                LT = 0: Exit Function
            ElseIf Val(Mid$(ca$, i, 1)) < Val(Mid$(cb$, i, 1)) Then
                LT = -1: Exit Function
            End If
        Next
    End If
End Function

Function TrimTail0$ (s$)
    Dim copys$
    Dim As Long dp, i, find
    copys$ = _Trim$(s$) 'might as well remove spaces too
    TrimTail0$ = copys$
    dp = InStr(copys$, ".")
    If dp > 0 Then
        i = Len(copys$): find = 0
        While i > dp And Mid$(copys$, i, 1) = "0"
            i = i - 1: find = 1
        Wend
        If find = 1 Then
            If i = dp Then
                TrimTail0$ = Mid$(copys$, 1, dp - 1)
            Else
                TrimTail0$ = Mid$(copys$, 1, i)
            End If
        End If
    End If
End Function

Function trim0$ (s$)
    Dim cs$, si$
    cs$ = s$
    si$ = Left$(cs$, 1)
    If si$ = "-" Then cs$ = Mid$(cs$, 2)
    cs$ = TrimLead0$(cs$)
    cs$ = TrimTail0$(cs$)
    If Right$(cs$, 1) = "." Then cs$ = Mid$(cs$, 1, Len(cs$) - 1)
    If si$ = "-" Then trim0$ = si$ + cs$ Else trim0$ = cs$
End Function

' for displaying truncated numbers say to 60 digits
Function showDP$ (num$, nDP As Long)
    Dim cNum$
    Dim As Long dp, d, i
    cNum$ = num$ 'since num$ could get changed
    showDP$ = num$
    dp = InStr(num$, ".")
    If dp > 0 Then
        If Len(Mid$(cNum$, dp + 1)) > nDP Then
            d = Val(Mid$(cNum$, dp + nDP + 1, 1))
            If d > 4 Then
                cNum$ = "0" + cNum$ ' tack on another 0 just in case 9's all the way to left
                dp = dp + 1
                i = dp + nDP
                While Mid$(cNum$, i, 1) = "9" Or Mid$(cNum$, i, 1) = "."
                    If Mid$(cNum$, i, 1) = "9" Then
                        Mid$(cNum$, i, 1) = "0"
                    End If
                    i = i - 1
                Wend
                Mid$(cNum$, i, 1) = _Trim$(Str$(Val(Mid$(cNum$, i, 1)) + 1)) 'last non 9 digit
                cNum$ = Mid$(cNum$, 1, dp + nDP) 'chop it
                showDP$ = trim0$(cNum$)
            Else
                showDP$ = Mid$(cNum$, 1, dp + nDP)
            End If
        End If
    End If
End Function

I used Pete's test example 8 ^ (1/1025) and matched M$ calculator but not in speed. The first number shown in screen shot below is (1/1025) * ln(8) before raised with e^x.


Attached Files Image(s)
   
b = b + ...
Reply
#9
BTW here is copy of proof of concept where I tested this method of Power$ calculation with the QB64 _Float Type:
Code: (Select All)
Option _Explicit
Print power##(8, 1 / 1025)

Function power## (x As _Float, exponent As _Float)
    Dim step1 As _Float
    step1 = exponent * nLn##(x)
    power## = eToTheX##(step1)
End Function


Function nLn## (x As _Float)
    Dim As _Float term, xbase, coef, sum, newsum
    Dim As Long k, count, kPower
    sum = 0
    term = (x - 1) / (x + 1)
    k = 0
    xbase = 1
    Do
        sum = newsum
        coef = 2 / (2 * k + 1) ' 2
        kPower = 2 * k + 1 ' 1
        While count < kPower
            xbase = xbase * term
            count = count + 1
        Wend
        newsum = sum + coef * xbase
        k = k + 1
    Loop Until sum = newsum
    nLn## = sum
End Function

Function eToTheX## (x As _Float)
    Dim As _Float sum
    Dim As Long n, i
    sum = 1: n = 50
    For i = n - 1 To 1 Step -1
        sum = 1 + x * sum / i
    Next
    eToTheX## = sum
End Function
b = b + ...
Reply
#10
I did a lot of that proof type testing with my original string +-*/ routines. It's a time saver.

I'll have a look see tonight. Interested in trying a log method. It would be great to have a string method of squares and powers that could handle something like: 104729 root 8 = 1.0000198556 according to an online nth root calculator. Obviously needs more precision but powering it back gets fairly close to 8. This takes just a second on an online nth root calculator, and the radicand is a PRIME number, so no factoring is involved. Log method, maybe?

Pete
Shoot first and shoot people who ask questions, later.
Reply




Users browsing this thread: 3 Guest(s)