Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Huge Matrices Library [Updated]
#2
This section contains the following public routines -

Code: (Select All)
' Integer

SUB IdentityIMatrix(A%(), MatrixSize%)
SUB ZeroIMatrix(A%())
SUB ConIMatrix(A%())
SUB IMatrixNegate(A%())
SUB IMatrixTransPose(A%(), B%())
SUB IMatrixCopy(This%(), ToThis%())
SUB IMatrixPrint(A%())
SUB IMatrixFilePrint(A%(), FileNumber)
SUB IMatrixInput(A%())
SUB IMatrixFileInput(A%() , FileNum)
SUB IMatrixAdd(A%(), B%(), C%())
SUB IMatrixScalarAdd(A%(), B%, C%())
SUB IMatrixSubtract(A%(), B%(), C%())
SUB IMatrixScalarSubtract(A%(), B%, C%())
SUB IMatrixMultiply(A%(), B%(), C%())
SUB IMatrixScalarMultiply(A%(), B%, C%())
FUNCTION IMatrixMaximum%(A%())
FUNCTION IMatrixMinimum%(A%())

And here is the library -

Code: (Select All)
REM ******************************************************************
REM * This library deals with 2 dimensional arrays that are treated  *
REM * as though they were mathematical matrices.  I have included    *
REM * all the routines that are associated with matrices that make  *
REM * sense for the various TYPEs that are used.  So for integers    *
REM * and longs there no routines for mean, variance, inverse or    *
REM * determinant.  Also for singles and doubles I have left out    *
REM * routines for inverse and determinant as their use is very      *
REM * limited and specialised.                                      *
REM ******************************************************************

REM ******************************************************************
REM * Private SUB only intended for use by the routines in this      *
REM * library.                                                      *
REM ******************************************************************

SUB MatrixError(Where$, Fault$)
    PRINT "Error in ";Where$;" - ";Fault$
    STOP
END SUB        ' | MatrixError

REM ******************************************************************
REM * Integer Matrices                                              *
REM ******************************************************************

REM ******************************************************************
REM * A%() is REDIM'ed to be a square matrix with MatrixSize& rows  *
REM * and MatrixSize& columns.  All the elements of A%() are set to  *
REM * zero except those where the row and the column are equal which *
REM * are set to one e.g. A%(1,1) = 1, A%(1,2) = 0.                  *
REM ******************************************************************

SUB IdentityIMatrix(A%(), MatrixSize&)
    MatrixSize& = ABS(MatrixSize&)
    REDIM A%(1 TO MatrixSize&, 1 TO MatrixSize&)
    FOR Column& = 1 TO MatrixSize&
        FOR Row& = 1 TO MatrixSize&
            IF Row& = Column& THEN
                A%(Row&,Column&) = 1
            ELSE
                A%(Row&,Column&) = 0
            END IF
        NEXT Row&
    NEXT Column&
END SUB        ' | IdentityIMatrix

REM ******************************************************************
REM * All the elements of A%() are set to zero.                      *
REM ******************************************************************

SUB ZeroIMatrix(A%())
    ARowStart& = LBOUND(A%)
    ARowEnd& = UBOUND(A%)
    AColStart& = LBOUND(A%, 2)
    AColEnd& = UBOUND(A%, 2)
    FOR Column& = AColStart& To AColEnd&
        FOR Row& = ARowStart& TO ARowEnd&
            A%(Row&,Column&) = 0
        NEXT Row&
    NEXT Column&
END SUB        ' | ZeroIMatrix

REM ******************************************************************
REM * All the elements of A%() are set to one.                      *
REM ******************************************************************

SUB ConIMatrix(A%())
    ARowStart& = LBOUND(A%)
    ARowEnd& = UBOUND(A%)
    AColStart& = LBOUND(A%, 2)
    AColEnd& = UBOUND(A%, 2)
    FOR Column& = AColStart& To AColEnd&
        FOR Row& = ARowStart& TO ARowEnd&
            A%(Row&,Column&) = 1
        NEXT Row&
    NEXT Column&
END SUB        ' | ConIMatrix

REM ******************************************************************
REM * LET A%() = -A%() e.g if A%(1,1) = 5 then after this routine    *
REM * A%(1,1) = -5.                                                  *
REM ******************************************************************

SUB IMatrixNegate(A%())
    ARowStart& = LBOUND(A%)
    ARowEnd& = UBOUND(A%)
    AColStart& = LBOUND(A%, 2)
    AColEnd& = UBOUND(A%, 2)
    FOR Column& = AColStart& To AColEnd&
        FOR Row& = ARowStart& TO ARowEnd&
            A%(Row&,Column&) = -A%(Row&,Column&)
        NEXT Row&
    NEXT Column&
END SUB        ' | IMatrixNegate

REM ******************************************************************
REM * B%() is REDIM'ed to have the same number of columns as A%()    *
REM * has rows and to have the same number of rows as A%() has      *
REM * columns, and then the rows of A%() are copied to the columns  *
REM * of B%().                                                      *
REM ******************************************************************

SUB IMatrixTransPose(A%(), B%())
    ARowStart& = LBOUND(A%)
    AColStart& = LBOUND(A%, 2)
    ARowEnd& = UBOUND(A%)
    AColEnd& = UBOUND(A%, 2)
    REDIM B%(AColStart& TO AColEnd&, ARowStart& TO ARowEnd&)
    FOR P& = AColStart& TO AColEnd&
        FOR Q& = ARowStart& TO ARowEnd&
            B%(P&, Q&) = A%(Q&, P&)
        NEXT Q&
    NEXT P&
END SUB        ' | IMatrixTransPose

REM ******************************************************************
REM * REDIM's ToThis%() to be the same size as This%() and then      *
REM * copies the contents of This%() to ToThis%().                  *
REM ******************************************************************

SUB IMatrixCopy(This%(), ToThis%())
    RowStart& = LBOUND(This%)
    RowFinish& = UBOUND(This%)
    ColStart& = LBOUND(This%, 2)
    ColFinish& = UBOUND(This%,2)
    REDIM ToThis%(RowStart& TO RowFinish&, ColStart& TO ColFinish&)
    FOR Column& = ColStart& TO ColFinish&
        FOR Row& = RowStart& To RowFinish&
            ToThis%(Row&,Column&) = This%(Row&,Column&)
        NEXT Row&
    NEXT Column&
END SUB        ' | IMatrixCopy

REM ******************************************************************
REM * Display the contents of A%() on screen, formatted in columns.  *
REM ******************************************************************

SUB IMatrixPrint(A%())
    ARowStart& = LBOUND(A%)
    ARowEnd& = UBOUND(A%)
    AColStart& = LBOUND(A%, 2)
    AColEnd& = UBOUND(A%, 2)
    FOR Row& = ARowStart& TO ARowEnd&
        FOR Column& = AColStart& To AColEnd&
            PRINT A%(Row&,Column&);" ";
        NEXT Column&
        PRINT
    NEXT Row&
END SUB        ' | IMatrixPrint

REM ******************************************************************
REM * Saves the contents of A%() to the file specified by FileNumber *
REM ******************************************************************

SUB IMatrixFilePrint(A%(), FileNumber)
    ARowStart& = LBOUND(A%)
    PRINT #FileNumber, ARowStart&;" ";
    ARowEnd& = UBOUND(A%)
    PRINT #FileNumber, ARowEnd&;" ";
    AColStart& = LBOUND(A%, 2)
    PRINT #FileNumber, AColStart&;" ";
    AColEnd& = UBOUND(A%, 2)
    PRINT #FileNumber, AColEnd&;" ";
    PRINT #FileNumber,
    FOR Row& = ARowStart& TO ARowEnd&
        FOR Column& = AColStart& To AColEnd&
            PRINT #FileNumber, A%(Row&,Column&);" ";
        NEXT Column&
        PRINT #FileNumber,
    NEXT Row&
END SUB        ' | IMatrixFilePrint

REM ******************************************************************
REM * This routine is for the sadists and masochists among you in    *
REM * that it inputs all the information necessary to create and    *
REM * fill a matrix fromthe keyboard.                                *
REM ******************************************************************

SUB IMatrixInput(A%())
    INPUT"Lowest subscript for A%(1):",A
    INPUT"Highest subscript for A%(1):",B
    INPUT"Lowest subscript for A%(2):",C
    INPUT"Lowest subscript for A%(2):",D
    REDIM A%(A TO B, C TO D)
    PRINT
    FOR Row& = A TO B
        FOR Column& = C TO D
            PRINT "Enter value for position ";Row&;", ";Column&;":";
            INPUT A
            A%(Row&,Column&) = FIX(A)
        NEXT Column&
    NEXT Row&
END SUB        ' | IMatrixInput

REM ******************************************************************
REM * This routine reads all the information necessary to create and *
REM * fill a matrix ( A%() ) from a file specified by filenum.  This *
REM * routine is the complement to IMatrixFilePrint and retrieves    *
REM * the information in the same order as that routine writes it.  *
REM ******************************************************************

SUB IMatrixFileInput(A%() , FileNum)
    INPUT #FileNum, A
    INPUT #FileNum, B
    INPUT #FileNum, C
    INPUT #FileNum, D
    A = ABS(FIX(A))
    B = ABS(FIX(B))
    C = ABS(FIX(C))
    D = ABS(FIX(D))
    REDIM A%(A TO B, C TO D)
    FOR Row& = A TO B
        FOR Column& = C TO D
            INPUT #FileNum, A
            A%(Row&,Column&) = FIX(A)
        NEXT Column&
    NEXT Row&
END SUB        ' | IMatrixFileInput

REM ******************************************************************
REM * Matrix addition e.g. C%() = A%() + B%().  A%() and B%() must  *
REM * have identical upper and lower bounds.  C%() is REDIM'ed to be *
REM * the same size.  Each element of C%() is assigned the result of *
REM * adding the equivalent elements in A%() and B%().              *
REM ******************************************************************

SUB IMatrixAdd(A%(), B%(), C%())
    ID$ = "IMatrixAdd"
    ARowStart& = LBOUND(A%)
    BRowStart& = LBOUND(B%)
    IF ARowStart& <> BRowStart& THEN
        MatrixError ID$, "Lower bounds of A(1) and B(1) not identical!"
    END IF
    ARowEnd& = UBOUND(A%)
    BRowEnd& = UBOUND(B%)
    IF ARowEnd& <> BRowEnd& THEN
        MatrixError ID$, "Upper bounds of A(1) and B(1) not identical!"
    END IF
    AColStart& = LBOUND(A%, 2)
    BColStart&& = LBOUND(B%, 2)
    IF AColStart& <> BColStart&& THEN
        MatrixError ID$, "Lower bounds of A(2) and B(2) not identical!"
    END IF
    AColEnd& = UBOUND(A%, 2)
    BColEnd& = UBOUND(B%, 2)
    IF ARowEnd& <> BRowEnd& THEN
        MatrixError ID$, "Upper bounds of A(1) and B(1) not identical!"
    END IF
    REDIM C%(ARowStart& TO ARowEnd&, AColStart& TO AColEnd&)
    FOR Column& = AColStart& To AColEnd&
        FOR Row& = ARowStart& TO ARowEnd&
            C%(Row&,Column&) = A%(Row&,Column&) + B%(Row&,Column&)
        NEXT Row&
    NEXT Column&
END SUB        ' | IMatrixAdd

REM ******************************************************************
REM * Matrix scalar addition e.g. C%() = A%() + B%.  C%() is        *
REM * REDIM'ed to be identical in size to A%().  Each element of    *
REM * C%() is assigned the result of adding B% to the equivalent    *
REM * elements in A%().                                              *
REM ******************************************************************

SUB IMatrixScalarAdd(A%(), B%, C%())
    ARowStart& = LBOUND(A%)
    ARowEnd& = UBOUND(A%)
    AColStart& = LBOUND(A%, 2)
    AColEnd& = UBOUND(A%, 2)
    REDIM C%(ARowStart& TO ARowEnd&, AColStart& TO AColEnd&)
    FOR Column& = AColStart& To AColEnd&
        FOR Row& = ARowStart& TO ARowEnd&
            C%(Row&,Column&) = A%(Row&,Column&) + B%
        NEXT Row&
    NEXT Column&
END SUB        ' | IMatrixScalarAdd

REM ******************************************************************
REM * Matrix subtraction e.g. C%() = A%() - B%().  A%() and B%()    *
REM * must have identical upper and lower bounds.  C%() is REDIM'ed  *
REM * to be the same size.  Each element of C%() is assigned the    *
REM * result of subtracting the equivalent element of B%() from the  *
REM * equivalent element of A%().                                    *
REM ******************************************************************

SUB IMatrixSubtract(A%(), B%(), C%())
    ID$ = "IMatrixSubtract"
    ARowStart& = LBOUND(A%)
    BRowStart& = LBOUND(B%)
    IF ARowStart& <> BRowStart& THEN
        MatrixError ID$, "Lower bounds of A(1) and B(1) not identical!"
    END IF
    ARowEnd& = UBOUND(A%)
    BRowEnd& = UBOUND(B%)
    IF ARowEnd& <> BRowEnd& THEN
        MatrixError ID$, "Upper bounds of A(1) and B(1) not identical!"
    END IF
    AColStart& = LBOUND(A%, 2)
    BColStart& = LBOUND(B%, 2)
    IF AColStart& <> BColStart& THEN
        MatrixError ID$, "Lower bounds of A(2) and B(2) not identical!"
    END IF
    AColEnd& = UBOUND(A%, 2)
    BColEnd& = UBOUND(B%, 2)
    IF ARowEnd& <> BRowEnd& THEN
        MatrixError ID$, "Upper bounds of A(1) and B(1) not identical!"
    END IF
    REDIM C%(ARowStart& TO ARowEnd&, AColStart& TO AColEnd&)
    FOR Column& = AColStart& To AColEnd&
        FOR Row& = ARowStart& TO ARowEnd&
            C%(Row&,Column&) = A%(Row&,Column&) - B%(Row&,Column&)
        NEXT Row&
    NEXT Column&
END SUB        ' | IMatrixSubtract

REM ******************************************************************
REM * Matrix scalar subtraction e.g. C%() = A%() - B%.  C%() is      *
REM * REDIM'ed to be the same size as A%().  Each element of C%() is *
REM * assigned the result of subtracting B% from the equivalent of  *
REM * A%().                                                          *
REM ******************************************************************

SUB IMatrixScalarSubtract(A%(), B%, C%())
    ARowStart& = LBOUND(A%)
    ARowEnd& = UBOUND(A%)
    AColStart& = LBOUND(A%, 2)
    AColEnd& = UBOUND(A%, 2)
    REDIM C%(ARowStart& TO ARowEnd&, AColStart& TO AColEnd&)
    FOR Column& = AColStart& To AColEnd&
        FOR Row& = ARowStart& TO ARowEnd&
            C%(Row&,Column&) = A%(Row&,Column&) - B%
        NEXT Row&
    NEXT Column&
END SUB        ' | IMatrixScalarSubtract

REM ******************************************************************
REM * Matrix multiplication e.g. C%() = A%() * B%().  As such it is  *
REM * easier to direct you to look at the source code for this      *
REM * routine rather than to try to explain it, other than to say    *
REM * that C%() is REDIM'ed according to the standard matrix formula *
REM ******************************************************************

SUB IMatrixMultiply(A%(), B%(), C%())
    ID$ = "IMatrixMultiply"
    ARowStart& = LBOUND(A%)
    BRowStart& = LBOUND(B%)
    IF ARowStart& <> BRowStart& THEN
        MatrixError ID$, "Lower bounds of A(1) and B(1) not identical!"
    END IF
    AColStart& = LBOUND(A%, 2)
    BColStart& = LBOUND(B%, 2)
    IF AColStart& <> BColStart& THEN
        MatrixError ID$, "Lower bounds of A(2) and B(2) not identical!"
    END IF
    BRowEnd& = UBOUND(B%)
    AColEnd& = UBOUND(A%, 2)
    IF AColEnd& <> BRowEnd& THEN
        MatrixError ID$, "Upper bounds of A(2) and B(1) not identical!"
    END IF
    ARowEnd& = UBOUND(A%)
    BColEnd& = UBOUND(B%, 2)
    REDIM C%(ARowStart& TO ARowEnd&, BColStart& TO BColEnd&)
    FOR Row& = ARowStart& TO ARowEnd&
        FOR Column& = BColStart& To BColEnd&
            Sum% = 0
            FOR Z& = AColStart& TO AColEnd&
                Sum% = Sum% + (A%(Row&, Z&) * B%(Z&, Column&))
            NEXT Z&
            C%(Row&,Column&) = Sum%
        NEXT Column&
    NEXT Row&
END SUB        ' | IMatrixMultiply

REM ******************************************************************
REM * Matrix scalar multiplication e.g. C%() = A%() * B%.  C%() is  *
REM * REDIM'ed to be the same size as A%().  Each element of C%() is *
REM * assigned the result of multiplying the equivalent element of  *
REM * A%() by B%.                                                    *
REM ******************************************************************

SUB IMatrixScalarMultiply(A%(), B%, C%())
    ARowStart& = LBOUND(A%)
    AColStart& = LBOUND(A%, 2)
    ARowEnd& = UBOUND(A%)
    AColEnd& = UBOUND(A%, 2)
    REDIM C%(ARowStart& TO ARowEnd&, AColStart& TO AColEnd&)
    FOR Column& = AColStart& To AColEnd&
        FOR Row& = ARowStart& TO ARowEnd&
            C%(Row&,Column&) = A%(Row&,Column&) * B%
        NEXT Row&
    NEXT Column&
END SUB        ' | IMatrixScalarMultiply

REM ******************************************************************
REM * Returns the maximum element contained in A%().                *
REM ******************************************************************

FUNCTION IMatrixMaximum%(A%())
    MyMax% = -32768
    ARowStart& = LBOUND(A%)
    ARowEnd& = UBOUND(A%)
    AColStart& = LBOUND(A%, 2)
    AColEnd& = UBOUND(A%, 2)
    FOR Column& = AColStart& To AColEnd&
        FOR Row& = ARowStart& TO ARowEnd&
            IF MyMax% < A%(Row&, Column&) THEN
                MyMax% = A%(Row&,Column&)
            END IF
        NEXT Row&
    NEXT Column&
    IMatrixMaximum% = MyMax%
END FUNCTION    ' | IMatrixMaximum%

REM ******************************************************************
REM * Returns the minimum element contained in A%().                *
REM ******************************************************************

FUNCTION IMatrixMinimum%(A%())
    MyMin% = 32767
    ARowStart& = LBOUND(A%)
    ARowEnd& = UBOUND(A%)
    AColStart& = LBOUND(A%, 2)
    AColEnd& = UBOUND(A%, 2)
    FOR Column& = AColStart& To AColEnd&
        FOR Row& = ARowStart& TO ARowEnd&
            IF MyMin% > A%(Row&, Column&) THEN
                MyMin% = A%(Row&,Column&)
            END IF
        NEXT Row&
    NEXT Column&
    IMatrixMinimum% = MyMin%
END FUNCTION    ' | IMatrixMinimum%

Next up is LONG Integer -

TR
Reply


Messages In This Thread
Huge Matrices Library [Updated] - by TarotRedhand - 05-04-2022, 07:57 AM
RE: Huge Matrices Library - by TarotRedhand - 05-04-2022, 08:02 AM
RE: Huge Matrices Library - by TarotRedhand - 05-04-2022, 08:06 AM
RE: Huge Matrices Library - by TarotRedhand - 05-04-2022, 08:11 AM
RE: Huge Matrices Library - by TarotRedhand - 05-04-2022, 08:15 AM
RE: Huge Matrices Library - by TarotRedhand - 05-04-2022, 08:19 AM
RE: Huge Matrices Library - by TarotRedhand - 05-04-2022, 08:23 AM
RE: Huge Matrices Library - by madscijr - 05-10-2022, 02:37 PM
RE: Huge Matrices Library - by TarotRedhand - 05-17-2022, 11:42 AM



Users browsing this thread: 1 Guest(s)