Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Huge Matrices Library [Updated]
#6
Contents are -

Code: (Select All)
' Double precision floating point

SUB IdentityDMatrix(A#(), MatrixSize%)
SUB ZeroDMatrix(A#())
SUB ConDMatrix(A#())
SUB DMatrixNegate(A#())
SUB DMatrixTransPose(A#(), B#())
SUB DMatrixCopy(This#(), ToThis#())
SUB DMatrixPrint(A#())
SUB DMatrixFilePrint(A#(), FileNumber)
SUB DMatrixInput(A#())
SUB DMatrixFileInput(A#() , FileNum)
SUB DMatrixAdd(A#(), B#(), C#())
SUB DMatrixScalarAdd(A#(), B#, C#())
SUB DMatrixSubtract(A#(), B#(), C#())
SUB DMatrixScalarSubtract(A#(), B#, C#())
SUB DMatrixMultiply(A#(), B#(), C#())
SUB DMatrixScalarMultiply(A#(), B#, C#())
FUNCTION DMatrixMaximum#(A#())
FUNCTION DMatrixMinimum#(A#())
FUNCTION DMatrixMean#(A#())
FUNCTION DMatrixVariance#(A#())

Library in this code box -

Code: (Select All)
REM ******************************************************************
REM * This library deals with 2 dimensional arrays that are treated  *
REM * as though they were mathematical matrices.  I have included    *
REM * all the routines that are associated with matrices that make  *
REM * sense for the various TYPEs that are used.  So for integers    *
REM * and longs there no routines for mean, variance, inverse or    *
REM * determinant.  Also for singles and doubles I have left out    *
REM * routines for inverse and determinant as their use is very      *
REM * limited and specialised.                                      *
REM ******************************************************************

REM ******************************************************************
REM * Private SUB only intended for use by the routines in this      *
REM * library.                                                      *
REM ******************************************************************

SUB MatrixError(Where$, Fault$)
    PRINT "Error in ";Where$;" - ";Fault$
    STOP
END SUB        ' | MatrixError

REM ******************************************************************
REM * Double precision floating point Matrices                      *
REM ******************************************************************

REM ******************************************************************
REM * A#() is REDIM'ed to be a square matrix with MatrixSize# rows  *
REM * and MatrixSize# columns.  All the elements of A#() are set to  *
REM * zero except those where the row and the column are equal which *
REM * are set to one e.g. A#(1,1) = 1, A#(1,2) = 0.                  *
REM ******************************************************************

SUB IdentityDMatrix(A#(), MatrixSize&)
    MatrixSize& = ABS(MatrixSize&)
    REDIM A#(1 TO MatrixSize&, 1 TO MatrixSize&)
    FOR Column& = 1 TO MatrixSize&
        FOR Row& = 1 TO MatrixSize&
            IF Row& = Column& THEN
                A#(Row&,Column&) = 1.0
            ELSE
                A#(Row&,Column&) = 0.0
            END IF
        NEXT Row&
    NEXT Column&
END SUB        ' | IdentityDMatrix

REM ******************************************************************
REM * All the elements of A#() are set to zero.                      *
REM ******************************************************************

SUB ZeroDMatrix(A#())
    ARowStart& = LBOUND(A#)
    ARowEnd& = UBOUND(A#)
    AColStart& = LBOUND(A#, 2)
    AColEnd& = UBOUND(A#, 2)
    FOR Column& = AColStart& To AColEnd&
        FOR Row& = ARowStart& TO ARowEnd&
            A#(Row&,Column&) = 0.0
        NEXT Row&
    NEXT Column&
END SUB        ' | ZeroDMatrix

REM ******************************************************************
REM * All the elements of A#() are set to one.                      *
REM ******************************************************************

SUB ConDMatrix(A#())
    ARowStart& = LBOUND(A#)
    ARowEnd& = UBOUND(A#)
    AColStart& = LBOUND(A#, 2)
    AColEnd& = UBOUND(A#, 2)
    FOR Column& = AColStart& To AColEnd&
        FOR Row& = ARowStart& TO ARowEnd&
            A#(Row&,Column&) = 1.0
        NEXT Row&
    NEXT Column&
END SUB        ' | ConDMatrix

REM ******************************************************************
REM * LET A#() = -A#() e.g if A#(1,1) = 5 then after this routine    *
REM * A#(1,1) = -5.                                                  *
REM ******************************************************************

SUB DMatrixNegate(A#())
    ARowStart& = LBOUND(A#)
    ARowEnd& = UBOUND(A#)
    AColStart& = LBOUND(A#, 2)
    AColEnd& = UBOUND(A#, 2)
    FOR Column& = AColStart& To AColEnd&
        FOR Row& = ARowStart& TO ARowEnd&
            A#(Row&,Column&) = -A#(Row&,Column&)
        NEXT Row&
    NEXT Column&
END SUB        ' | DMatrixNegate

REM ******************************************************************
REM * B#() is REDIM'ed to have the same number of columns as A#()    *
REM * has rows and to have the same number of rows as A#() has      *
REM * columns, and then the rows of A#() are copied to the columns  *
REM * of B#().                                                      *
REM ******************************************************************

SUB DMatrixTransPose(A#(), B#())
    ARowStart& = LBOUND(A#)
    AColStart& = LBOUND(A#, 2)
    ARowEnd& = UBOUND(A#)
    AColEnd& = UBOUND(A#, 2)
    REDIM B#(AColStart& TO AColEnd&, ARowStart& TO ARowEnd&)
    FOR P& = AColStart& TO AColEnd&
        FOR Q& = ARowStart& TO ARowEnd&
            B#(P&, Q&) = A#(Q&, P&)
        NEXT Q&
    NEXT P&
END SUB        ' | DMatrixTransPose

REM ******************************************************************
REM * REDIM's ToThis#() to be the same size as This#() and then      *
REM * copies the contents of This#() to ToThis#().                  *
REM ******************************************************************

SUB DMatrixCopy(This#(), ToThis#())
    RowStart& = LBOUND(This#)
    RowFinish& = UBOUND(This#)
    ColStart& = LBOUND(This#, 2)
    ColFinish& = UBOUND(This#,2)
    REDIM ToThis#(RowStart& TO RowFinish&, ColStart& TO ColFinish&)
    FOR Column& = ColStart& TO ColFinish&
        FOR Row& = RowStart& To RowFinish&
            ToThis#(Row&,Column&) = This#(Row&,Column&)
        NEXT Row&
    NEXT Column&
END SUB        ' | DMatrixCopy

REM ******************************************************************
REM * Display the contents of A#() on screen, formatted in columns.  *
REM ******************************************************************

SUB DMatrixPrint(A#())
    ARowStart& = LBOUND(A#)
    ARowEnd& = UBOUND(A#)
    AColStart& = LBOUND(A#, 2)
    AColEnd& = UBOUND(A#, 2)
    FOR Row& = ARowStart& TO ARowEnd&
        FOR Column& = AColStart& To AColEnd&
            PRINT A#(Row&,Column&);" ";
        NEXT Column&
        PRINT
    NEXT Row&
END SUB        ' | DMatrixPrint

REM ******************************************************************
REM * Saves the contents of A#() to the file specified by FileNumber *
REM ******************************************************************

SUB DMatrixFilePrint(A#(), FileNumber)
    ARowStart& = LBOUND(A#)
    PRINT #FileNumber, ARowStart&;" ";
    ARowEnd& = UBOUND(A#)
    PRINT #FileNumber, ARowEnd&;" ";
    AColStart& = LBOUND(A#, 2)
    PRINT #FileNumber, AColStart&;" ";
    AColEnd& = UBOUND(A#, 2)
    PRINT #FileNumber, AColEnd&;" ";
    PRINT #FileNumber,
    FOR Row& = ARowStart& TO ARowEnd&
        FOR Column& = AColStart& To AColEnd&
            PRINT #FileNumber, A#(Row&,Column&);" ";
        NEXT Column&
        PRINT #FileNumber,
    NEXT Row&
END SUB        ' | DMatrixFilePrint

REM ******************************************************************
REM * This routine is for the sadists and masochists among you in    *
REM * that it inputs all the information necessary to create and    *
REM * fill a matrix fromthe keyboard.                                *
REM ******************************************************************

SUB DMatrixInput(A#())
    INPUT"Lowest subscript for A#(1):",A
    INPUT"Highest subscript for A#(1):",B
    INPUT"Lowest subscript for A#(2):",C
    INPUT"Lowest subscript for A#(2):",D
    REDIM A#(A TO B, C TO D)
    PRINT
    FOR Row& = A TO B
        FOR Column& = C TO D
            PRINT "Enter value for position ";Row&;", ";Column&;":";
            INPUT A
            A#(Row&,Column&) = FIX(A)
        NEXT Column&
    NEXT Row&
END SUB        ' | DMatrixInput

REM ******************************************************************
REM * This routine reads all the information necessary to create and *
REM * fill a matrix ( A#() ) from a file specified by filenum.  This *
REM * routine is the complement to IMatrixFilePrint and retrieves    *
REM * the information in the same order as that routine writes it.  *
REM ******************************************************************

SUB DMatrixFileInput(A#() , FileNum)
    INPUT #FileNum, A
    INPUT #FileNum, B
    INPUT #FileNum, C
    INPUT #FileNum, D
    A = ABS(FIX(A))
    B = ABS(FIX(B))
    C = ABS(FIX(C))
    D = ABS(FIX(D))
    REDIM A#(A TO B, C TO D)
    FOR Row& = A TO B
        FOR Column& = C TO D
            INPUT #FileNum, A#(Row&,Column&)
        NEXT Column&
    NEXT Row&
END SUB        ' | DMatrixFileInput

REM ******************************************************************
REM * Matrix addition e.g. C#() = A#() + B#().  A#() and B#() must  *
REM * have identical upper and lower bounds.  C#() is REDIM'ed to be *
REM * the same size.  Each element of C#() is assigned the result of *
REM * adding the equivalent elements in A#() and B#().              *
REM ******************************************************************

SUB DMatrixAdd(A#(), B#(), C#())
    ID$ = "DMatrixAdd"
    ARowStart& = LBOUND(A#)
    BRowStart& = LBOUND(B#)
    IF ARowStart& <> BRowStart& THEN
        MatrixError ID$, "Lower bounds of A(1) and B(1) not identical#"
    END IF
    ARowEnd& = UBOUND(A#)
    BRowEnd& = UBOUND(B#)
    IF ARowEnd& <> BRowEnd& THEN
        MatrixError ID$, "Upper bounds of A(1) and B(1) not identical#"
    END IF
    AColStart& = LBOUND(A#, 2)
    BColStart& = LBOUND(B#, 2)
    IF AColStart& <> BColStart& THEN
        MatrixError ID$, "Lower bounds of A(2) and B(2) not identical#"
    END IF
    AColEnd& = UBOUND(A#, 2)
    BColEnd& = UBOUND(B#, 2)
    IF ARowEnd& <> BRowEnd& THEN
        MatrixError ID$, "Upper bounds of A(1) and B(1) not identical#"
    END IF
    REDIM C#(ARowStart& TO ARowEnd&, AColStart& TO AColEnd&)
    FOR Column& = AColStart& To AColEnd&
        FOR Row& = ARowStart& TO ARowEnd&
            C#(Row&,Column&) = A#(Row&,Column&) + B#(Row&,Column&)
        NEXT Row&
    NEXT Column&
END SUB        ' | DMatrixAdd

REM ******************************************************************
REM * Matrix scalar addition e.g. C#() = A#() + B#.  C#() is        *
REM * REDIM'ed to be identical in size to A#().  Each element of    *
REM * C#() is assigned the result of adding B# to the equivalent    *
REM * elements in A#().                                              *
REM ******************************************************************

SUB DMatrixScalarAdd(A#(), B#, C#())
    ARowStart& = LBOUND(A#)
    ARowEnd& = UBOUND(A#)
    AColStart& = LBOUND(A#, 2)
    AColEnd& = UBOUND(A#, 2)
    REDIM C#(ARowStart& TO ARowEnd&, AColStart& TO AColEnd&)
    FOR Column& = AColStart& To AColEnd&
        FOR Row& = ARowStart& TO ARowEnd&
            C#(Row&,Column&) = A#(Row&,Column&) + B#
        NEXT Row&
    NEXT Column&
END SUB        ' | DMatrixScalarAdd

REM ******************************************************************
REM * Matrix subtraction e.g. C#() = A#() - B#().  A#() and B#()    *
REM * must have identical upper and lower bounds.  C#() is REDIM'ed  *
REM * to be the same size.  Each element of C#() is assigned the    *
REM * result of subtracting the equivalent element of B#() from the  *
REM * equivalent element of A#().                                    *
REM ******************************************************************

SUB DMatrixSubtract(A#(), B#(), C#())
    ID$ = "DMatrixSubtract"
    ARowStart& = LBOUND(A#)
    BRowStart& = LBOUND(B#)
    IF ARowStart& <> BRowStart& THEN
        MatrixError ID$, "Lower bounds of A(1) and B(1) not identical#"
    END IF
    ARowEnd& = UBOUND(A#)
    BRowEnd& = UBOUND(B#)
    IF ARowEnd& <> BRowEnd& THEN
        MatrixError ID$, "Upper bounds of A(1) and B(1) not identical#"
    END IF
    AColStart& = LBOUND(A#, 2)
    BColStart& = LBOUND(B#, 2)
    IF AColStart& <> BColStart& THEN
        MatrixError ID$, "Lower bounds of A(2) and B(2) not identical#"
    END IF
    AColEnd& = UBOUND(A#, 2)
    BColEnd& = UBOUND(B#, 2)
    IF ARowEnd& <> BRowEnd& THEN
        MatrixError ID$, "Upper bounds of A(1) and B(1) not identical#"
    END IF
    REDIM C#(ARowStart& TO ARowEnd&, AColStart& TO AColEnd&)
    FOR Column& = AColStart& To AColEnd&
        FOR Row& = ARowStart& TO ARowEnd&
            C#(Row&,Column&) = A#(Row&,Column&) - B#(Row&,Column&)
        NEXT Row&
    NEXT Column&
END SUB        ' | DMatrixSubtract

REM ******************************************************************
REM * Matrix scalar subtraction e.g. C#() = A#() - B#.  C#() is      *
REM * REDIM'ed to be the same size as A#().  Each element of C#() is *
REM * assigned the result of subtracting B# from the equivalent of  *
REM * A#().                                                          *
REM ******************************************************************

SUB DMatrixScalarSubtract(A#(), B#, C#())
    ARowStart& = LBOUND(A#)
    ARowEnd& = UBOUND(A#)
    AColStart& = LBOUND(A#, 2)
    AColEnd& = UBOUND(A#, 2)
    REDIM C#(ARowStart& TO ARowEnd&, AColStart& TO AColEnd&)
    FOR Column& = AColStart& To AColEnd&
        FOR Row& = ARowStart& TO ARowEnd&
            C#(Row&,Column&) = A#(Row&,Column&) - B#
        NEXT Row&
    NEXT Column&
END SUB        ' | DMatrixScalarSubtract

REM ******************************************************************
REM * Matrix multiplication e.g. C#() = A#() * B#().  As such it is  *
REM * easier to direct you to look at the source code for this      *
REM * routine rather than to try to explain it, other than to say    *
REM * that C#() is REDIM'ed according to the standard matrix formula *
REM ******************************************************************

SUB DMatrixMultiply(A#(), B#(), C#())
    ID$ = "DMatrixMultiply"
    ARowStart& = LBOUND(A#)
    BRowStart& = LBOUND(B#)
    IF ARowStart& <> BRowStart& THEN
        MatrixError ID$, "Lower bounds of A(1) and B(1) not identical#"
    END IF
    AColStart& = LBOUND(A#, 2)
    BColStart& = LBOUND(B#, 2)
    IF AColStart& <> BColStart& THEN
        MatrixError ID$, "Lower bounds of A(2) and B(2) not identical#"
    END IF
    BRowEnd& = UBOUND(B#)
    AColEnd& = UBOUND(A#, 2)
    IF AColEnd& <> BRowEnd& THEN
        MatrixError ID$, "Upper bounds of A(2) and B(1) not identical#"
    END IF
    ARowEnd& = UBOUND(A#)
    BColEnd& = UBOUND(B#, 2)
    REDIM C#(ARowStart& TO ARowEnd&, BColStart& TO BColEnd&)
    FOR Row& = ARowStart& TO ARowEnd&
        FOR Column& = BColStart& To BColEnd&
            Sum# = 0.0
            FOR Z& = AColStart& TO AColEnd&
                Sum# = Sum# + (A#(Row&, Z&) * B#(Z&, Column&))
            NEXT Z&
            C#(Row&,Column&) = Sum#
        NEXT Column&
    NEXT Row&
END SUB        ' | DMatrixMultiply

REM ******************************************************************
REM * Matrix scalar multiplication e.g. C#() = A#() * B#.  C#() is  *
REM * REDIM'ed to be the same size as A#().  Each element of C#() is *
REM * assigned the result of multiplying the equivalent element of  *
REM * A#() by B#.                                                    *
REM ******************************************************************

SUB DMatrixScalarMultiply(A#(), B#, C#())
    ARowStart& = LBOUND(A#)
    AColStart& = LBOUND(A#, 2)
    ARowEnd& = UBOUND(A#)
    AColEnd& = UBOUND(A#, 2)
    REDIM C#(ARowStart& TO ARowEnd&, AColStart& TO AColEnd&)
    FOR Column& = AColStart& To AColEnd&
        FOR Row& = ARowStart& TO ARowEnd&
            C#(Row&,Column&) = A#(Row&,Column&) * B#
        NEXT Row&
    NEXT Column&
END SUB        ' | DMatrixScalarMultiply

REM ******************************************************************
REM * Returns the maximum element contained in A#().                *
REM ******************************************************************

FUNCTION DMatrixMaximum#(A#())
    MyMax# = -4.490656458412465E-324
    ARowStart& = LBOUND(A#)
    ARowEnd& = UBOUND(A#)
    AColStart& = LBOUND(A#, 2)
    AColEnd& = UBOUND(A#, 2)
    FOR Column& = AColStart& To AColEnd&
        FOR Row& = ARowStart& TO ARowEnd&
            IF MyMax# < A#(Row&, Column&) THEN
                MyMax# = A#(Row&,Column&)
            END IF
        NEXT Row&
    NEXT Column&
    DMatrixMaximum# = MyMax#
END FUNCTION    ' | DMatrixMaximum#

REM ******************************************************************
REM * Returns the minimum element contained in A#().                *
REM ******************************************************************

FUNCTION DMatrixMinimum#(A#())
    MyMin# = 1.797693134862310E+308
    ARowStart& = LBOUND(A#)
    ARowEnd& = UBOUND(A#)
    AColStart& = LBOUND(A#, 2)
    AColEnd& = UBOUND(A#, 2)
    FOR Column& = AColStart& To AColEnd&
        FOR Row& = ARowStart& TO ARowEnd&
            IF MyMin# > A#(Row&, Column&) THEN
                MyMin# = A#(Row&,Column&)
            END IF
        NEXT Row&
    NEXT Column&
    DMatrixMinimum# = MyMin#
END FUNCTION    ' | DMatrixMinimum#

REM ******************************************************************
REM * Returns the Average of all the values contained in A#().      *
REM ******************************************************************

FUNCTION DMatrixMean#(A#())
    Sum# = 0.0
    ARowStart& = LBOUND(A#)
    AColStart& = LBOUND(A#, 2)
    ARowEnd& = UBOUND(A#)
    AColEnd& = UBOUND(A#, 2)
    FOR Column& = AColStart& TO AColEnd&
        FOR Row& = ARowStart& TO ARowEnd&
            Sum# = Sum# + A#(Row&,Column&)
        NEXT Row&
    NEXT Column&
    MatrixSize# = (1.0 + ARowEnd& - ARowStart&) * (1.0 + AColEnd& - AColStart&)
    DMatrixMean# = Sum# / MatrixSize#
END FUNCTION    ' | DMatrixMean#

REM ******************************************************************
REM * Returns the variance of all the values contained in A#().      *
REM ******************************************************************

FUNCTION DMatrixVariance#(A#())
    SumSquared# = 0.0
    MyMean# = DMatrixMean#(A#())
    ARowStart& = LBOUND(A#)
    AColStart& = LBOUND(A#, 2)
    ARowEnd& = UBOUND(A#)
    AColEnd& = UBOUND(A#, 2)
    FOR Column& = AColStart& TO AColEnd&
        FOR Row& = ARowStart& TO ARowEnd&
            Temp# = A#(Row&,Column&) - MyMean#
            Temp# = Temp# * Temp#
            SumSquared# = SumSquared# + Temp#
        NEXT Row&
    NEXT Column&
    MatrixSize# = (1.0 + ARowEnd& - ARowStart&) * (1.0 + AColEnd& - AColStart&)
    DMatrixVariance# = SumSquared# / (MatrixSize# - 1.0)
END FUNCTION    ' | DMatrixVariance#

And finally _FLOAT in next post

TR
Reply


Messages In This Thread
Huge Matrices Library [Updated] - by TarotRedhand - 05-04-2022, 07:57 AM
RE: Huge Matrices Library - by TarotRedhand - 05-04-2022, 08:02 AM
RE: Huge Matrices Library - by TarotRedhand - 05-04-2022, 08:06 AM
RE: Huge Matrices Library - by TarotRedhand - 05-04-2022, 08:11 AM
RE: Huge Matrices Library - by TarotRedhand - 05-04-2022, 08:15 AM
RE: Huge Matrices Library - by TarotRedhand - 05-04-2022, 08:19 AM
RE: Huge Matrices Library - by TarotRedhand - 05-04-2022, 08:23 AM
RE: Huge Matrices Library - by madscijr - 05-10-2022, 02:37 PM
RE: Huge Matrices Library - by TarotRedhand - 05-17-2022, 11:42 AM



Users browsing this thread: 1 Guest(s)