Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Next small EQ step - EQ DONE in last example!
#9
(01-06-2025, 08:48 PM)a740g Wrote: This is cool stuff! I'll check it out after work. Have you tried doing pitch shifts?

So I already tried it Smile  This code changes the frequency itself continuously: (in code is the new part commented as reply for you)

Code: (Select All)

_Title "QB64PE Sound Equalizer"
Zdroj = _SndOpen("s.mp3") 'USE MP3 here (MEM read singles from _Memsound block)
Dim Zvuk As _MEM
Dim A As Long
UU = 2047 '                                        We detecting frequency from 8192 samples (0 to 8191)
Dim Blok(UU) As Single '                            Block for FFT samples - Left channel
Dim BlokR(UU) As Single '                                                  Right
Dim RealPart(UU) As Single, ImagPart(UU) As Single ' Real and imaginary signal values for FFT - Left
Dim RealPartR(UU) As Single, ImagPartR(UU) As Single '                                        - Right
Dim Eq(9) As Single

ReDim NewRealPartR(UU) As Single
ReDim NewImagPartR(UU) As Single
ReDim NewRealPart(UU) As Single
ReDim NewImagPart(UU) As Single


Dim Shared N As Long
Dim VzorkovaciFrekvence As Single '                  SoundRate
Dim VisualEq(9) As Single
Dim Colors(9) As _Unsigned Long
Colors(0) = _RGB32(255, 0, 0)
Colors(1) = _RGB32(255, 127, 0)
Colors(2) = _RGB32(255, 255, 0)
Colors(3) = _RGB32(127, 255, 0)
Colors(4) = _RGB32(0, 255, 0)
Colors(5) = _RGB32(0, 255, 127)
Colors(6) = _RGB32(0, 255, 255)
Colors(7) = _RGB32(0, 127, 255)
Colors(8) = _RGB32(0, 0, 255)
Colors(9) = _RGB32(127, 0, 255)

' Scales for correcting the sensitivity of the human ear (Fletcher-Munson)
Dim Korekce(9) As Single
Korekce(0) = 2.0 ' We amplify bass frequencies (2 to 64 Hz)
Korekce(1) = 1.8 ' We will amplify low bass (65 to 125 Hz)
Korekce(2) = 1.5 ' Middle bass (126 to 250 Hz)
Korekce(3) = 1.2 ' Lower midrange (251 to 500 Hz)
Korekce(4) = 1.0 ' Mindrange (501 to 1000 Hz)
Korekce(5) = 0.8 ' Higher Mindrange (1001 to 2000 Hz)
Korekce(6) = 0.7 ' Lower treble (2001 to 4000 Hz)
Korekce(7) = 0.6 ' Treble (4001 to 8000 Hz)
Korekce(8) = 0.5 ' Higher treble (8001 to 16000 Hz)
Korekce(9) = 0.4 ' Ultrasonic frequencies (16001 to 22000 Hz) are suppressed


N = UU + 1 '                                        FFT Block size
Fk = 1


Zvuk = _MemSound(Zdroj, 0)
VzorkovaciFrekvence = _SndRate
Screen _NewImage(800, 600, 32) ' Create a new window for visualization

For FillEq = 0 To 9
    Eq(FillEq) = 2
Next

Do Until A& = Zvuk.SIZE
    ' Načtení bloku vzorků
    For i = 0 To N - 1
        If A& >= Zvuk.SIZE Then Exit For
        LevaStopa = _MemGet(Zvuk, Zvuk.OFFSET + A&, Single)
        PravaStopa = _MemGet(Zvuk, Zvuk.OFFSET + A& + 4, Single)
        Blok(i) = LevaStopa '                    Left Track
        BlokR(i) = PravaStopa '                  Right Track
        RealPart(i) = LevaStopa '                Left Track AudioData  RealPart must contains sound data
        RealPartR(i) = PravaStopa '              Right Track AudioData
        ImagPart(i) = 0 '                        Left Track imaginary data
        ImagPartR(i) = 0 '                        Right Track imaginary data
        A& = A& + 8 '                            go to next sample (8 bytes = 2 * 4 (left, right))
    Next i

    ' Apply FFT to block

    Call FFT(RealPart(), ImagPart(), N) '        shift sound from time run to frequency run - Left Track
    Call FFT(RealPartR(), ImagPartR(), N) '                                        the same - Right Track


    'spectrum filtration
    For k = 0 To N - 1
        Frekvence = k * VzorkovaciFrekvence / N 'Frequency calculation (k * _SndRate / N)
        Vol = 0
        Select Case Frekvence 'use frequency for equalizing!
            Case 2 To 64: Vol = Eq(0): VisualEq(0) = VisualEq(0) + Abs(RealPart(k)) * Eq(0) * Korekce(0)
            Case 65 To 125: Vol = Eq(1): VisualEq(1) = VisualEq(1) + Abs(RealPart(k)) * Eq(1) * Korekce(1)
            Case 126 To 250: Vol = Eq(2): VisualEq(2) = VisualEq(2) + Abs(RealPart(k)) * Eq(2) * Korekce(2)
            Case 251 To 500: Vol = Eq(3): VisualEq(3) = VisualEq(3) + Abs(RealPart(k)) * Eq(3) * Korekce(3)
            Case 501 To 1000: Vol = Eq(4): VisualEq(4) = VisualEq(4) + Abs(RealPart(k)) * Eq(4) * Korekce(4)
            Case 1001 To 2000: Vol = Eq(5): VisualEq(5) = VisualEq(5) + Abs(RealPart(k)) * Eq(5) * Korekce(5)
            Case 2001 To 4000: Vol = Eq(6): VisualEq(6) = VisualEq(6) + Abs(RealPart(k)) * Eq(6) * Korekce(6)
            Case 4001 To 8000: Vol = Eq(7): VisualEq(7) = VisualEq(7) + Abs(RealPart(k)) * Eq(7) * Korekce(7)
            Case 8001 To 16000: Vol = Eq(8): VisualEq(8) = VisualEq(8) + Abs(RealPart(k)) * Eq(8) * Korekce(8)
            Case 16001 To 22000: Vol = Eq(9): VisualEq(9) = VisualEq(9) + Abs(RealPart(k)) * Eq(9) * Korekce(9)
        End Select

        RealPart(k) = RealPart(k) * Vol 'update frequency so, as is equalization set
        ImagPart(k) = ImagPart(k) * Vol

        RealPartR(k) = RealPartR(k) * Vol
        ImagPartR(k) = ImagPartR(k) * Vol
    Next k

    '--------------------------------  A 740g wrote: This is cool stuff! I'll check it out after work. Have you tried doing pitch shifts? ---------------------------------------
    'REPLY:

    'Changing the size of the spectrum according to the new tuning

    For i = 0 To N - 1
        'Recalculation of the new index

        newIndex = i * Fk

        'Verifying that newIndex is within a valid range
        If newIndex > N - 1 Then
            newIndex = N - 1
        End If

        ' Find two adjacent indices for interpolation
        index1 = Int(newIndex) 'Nearest smaller or equal index
        index2 = index1 + 1 ' Nearest larger index

        ' Verify that index2 is also in a valid range
        If index2 > N - 1 Then
            index2 = index1
        End If

        ' Weight for linear interpolation
        weight = newIndex - index1

        'Linear interpolation of real and imaginary parts - left channel
        RealPartInterpolated = RealPart(index1) + weight * (RealPart(index2) - RealPart(index1))
        ImagPartInterpolated = ImagPart(index1) + weight * (ImagPart(index2) - ImagPart(index1))

        'Linear interpolation - right channel
        RealPartInterpolatedR = RealPartR(index1) + weight * (RealPartR(index2) - RealPartR(index1))
        ImagPartInterpolatedR = ImagPartR(index1) + weight * (ImagPartR(index2) - ImagPartR(index1))


        'Saving interpolated values to a new spectrum
        NewRealPart(i) = RealPartInterpolated
        NewImagPart(i) = ImagPartInterpolated
        NewRealPartR(i) = RealPartRInterpolatedR
        NewImagPartR(i) = ImagPartRInterpolatedR

    Next i
    '-------------------------------------------------------- REPLY END ---------------------------------------------------------------------------------------------------------
    'Unlike the previous code, here continue with the NewRealPart and NewImagPart fields

    'create new audio signal using IFFT  (from this block)
    Call IFFT(NewRealPart(), NewImagPart(), N)
    Call IFFT(NewRealPartR(), NewImagPartR(), N)


    'Play created signal
    For i = 0 To N - 1
        If NewRealPart(i) > .95 Then NewRealPart(i) = .95
        If NewRealPart(i) < -.95 Then NewRealPart(i) = -.95
        If NewRealPartR(i) > .95 Then NewRealPartR(i) = .95
        If NewRealPartR(i) < -.95 Then NewRealPartR(i) = -.95
        _SndRaw NewRealPart(i), NewRealPartR(i)
    Next i

    Cls
    For EqBand = 0 To 9
        VisualEq(EqBand) = VisualEq(EqBand) / N ' Normalize
        BarHeight = VisualEq(EqBand) * 400 ' Scale to fit screen
        Line (EqBand * 80 + 20, 600)-(EqBand * 80 + 60, 600 - BarHeight), Colors(EqBand), BF
    Next


    Do Until _SndRawLen < .05 'wait until is possible playing next block and it this time use keyboard
        i$ = InKey$
        Select Case LCase$(i$)
            Case "q": Eq(0) = Eq(0) + .1
            Case "a": Eq(0) = Eq(0) - .1
            Case "w": Eq(1) = Eq(1) + .1
            Case "s": Eq(1) = Eq(1) - .1
            Case "e": Eq(2) = Eq(2) + .1
            Case "d": Eq(2) = Eq(2) - .1
            Case "r": Eq(3) = Eq(3) + .1
            Case "f": Eq(3) = Eq(3) - .1
            Case "t": Eq(4) = Eq(4) + .1
            Case "g": Eq(4) = Eq(4) - .1
            Case "y": Eq(5) = Eq(5) + .1
            Case "h": Eq(5) = Eq(5) - .1
            Case "u": Eq(6) = Eq(6) + .1
            Case "j": Eq(6) = Eq(6) - .1
            Case "i": Eq(7) = Eq(7) + .1
            Case "k": Eq(7) = Eq(7) - .1
            Case "o": Eq(8) = Eq(8) + .1
            Case "l": Eq(8) = Eq(8) - .1
            Case "p": Eq(9) = Eq(9) + .1
            Case ";": Eq(9) = Eq(9) - .1
            Case "+": Fk = Fk + .01
            Case "-": Fk = Fk - .01
             If Fk < .1 Then Fk = .1
             If Fk > 2 Then Fk = 2
        End Select

        Locate 4
        Print " Use keys for equalize:"
        Print
        Print " q/a [2 to 64 Hz] "; Int((Eq(0) - 2) * 100); "% "
        Print " w/s [65 to 125 Hz] "; Int((Eq(1) - 2) * 100); "% "
        Print " e/d [126 to 250 Hz] "; Int((Eq(2) - 2) * 100); "% "
        Print " r/f [251 to 500 Hz] "; Int((Eq(3) - 2) * 100); "% "
        Print " t/g [501 to 1000 Hz] "; Int((Eq(4) - 2) * 100); "% "
        Print " y/h [1001 to 2000 Hz] "; Int((Eq(5) - 2) * 100); "% "
        Print " u/j [2001 to 4000 Hz] "; Int((Eq(6) - 2) * 100); "% "
        Print " i/k [4001 to 8000 Hz] "; Int((Eq(7) - 2) * 100); "% "
        Print " o/l [8001 to 16000 Hz] "; Int((Eq(8) - 2) * 100); "% "
        Print " p/; [16001 to 22000 Hz] "; Int((Eq(9) - 2) * 100); "% "
        Print " + or - for changing frequency shift! "
        _Display

        For EqVolsTest = 0 To 9
            If Eq(EqVolsTest) > 4 Then Eq(EqVolsTest) = 4
            If Eq(EqVolsTest) < 0 Then Eq(EqVolsTest) = 0
        Next
    Loop
    '_Display
Loop
_MemFree Zvuk
End

Sub FFT (iRealPart() As Single, iImagPart() As Single, N As Long)
    Dim i As Long, j As Long, k As Long, m As Long, stp As Long
    Dim angle As Double
    Dim tReal As Double, tImag As Double, uReal As Double, uImag As Double

    ' Bit-reverse permutation
    j = 0
    For i = 0 To N - 1
        If i < j Then
            Swap iRealPart(i), iRealPart(j)
            Swap iImagPart(i), iImagPart(j)
        End If
        k = N \ 2
        Do While (k >= 1 And j >= k)
            j = j - k
            k = k \ 2
        Loop
        j = j + k
    Next i

    m = 1
    Do While m < N
        stp = m * 2
        angle = -3.14159265359 / m
        For k = 0 To m - 1
            uReal = Cos(k * angle)
            uImag = Sin(k * angle)
            For i = k To N - 1 Step stp
                j = i + m
                tReal = uReal * iRealPart(j) - uImag * iImagPart(j)
                tImag = uReal * iImagPart(j) + uImag * iRealPart(j)
                iRealPart(j) = iRealPart(i) - tReal
                iImagPart(j) = iImagPart(i) - tImag
                iRealPart(i) = iRealPart(i) + tReal
                iImagPart(i) = iImagPart(i) + tImag
            Next i
        Next k
        m = stp
    Loop
End Sub

Sub IFFT (iRealPart() As Single, iImagPart() As Single, N As Long)
    Dim i As Long

    ' Reversing the signs of imaginary components
    For i = 0 To N - 1
        iImagPart(i) = -iImagPart(i)
    Next i

    ' Performing FFT
    Call FFT(iRealPart(), iImagPart(), N)

    'Normalization and re-rotation of the signs of the imaginary components
    For i = 0 To N - 1
        iRealPart(i) = iRealPart(i) / N
        iImagPart(i) = -iImagPart(i) / N
    Next i
End Sub

USE + and -  Big Grin


Reply


Messages In This Thread
RE: Next small EQ step - by Petr - 03-31-2024, 10:39 AM
RE: Next small EQ step - by Petr - 04-07-2024, 09:07 AM
RE: Next small EQ step - by Petr - 04-07-2024, 06:35 PM
RE: Next small EQ step - by Petr - 01-06-2025, 05:19 PM
RE: Next small EQ step - EQ DONE in last example! - by Petr - 01-07-2025, 04:26 PM



Users browsing this thread: 1 Guest(s)