I think from the way your code looks @Pete, what you need the most is a few helper functions like the following:
Presto-whammo, I autmoagically normalize my two strings so that they're the same length (minus signs which are processed independently as I showed up above.)
Since everything now lines up neatly, there's no real issue in processing them. We just grab large chunks of each string, take the value of them, and build our answer one chunk at a time until we're finished -- with the trick to efficiency being to grab as large of a chunk that we can process each time as possible.
Code: (Select All)
Screen _NewImage(1280, 720, 32)
_Define A-Z As _FLOAT
Randomize Timer
For i = 1 To 10
a$ = Str$(10 * Rnd) 'let's use some non-matching values here so that we get a good range
b$ = Str$(-1000000000000 * Rnd)
Print a$, b$, "Original"
FixNumbers a$, b$
Print a$, b$, "Normalized"
Print "---------------"
Next
Sleep
Sub FixNumbers (a$, b$)
'first remove scientific notation and spaces from both
a$ = _Trim$(N2S$(a$)): b$ = _Trim$(N2S$(b$))
'then find the decimal position for both and normalize the expressions
d1 = InStr(a$, "."): d2 = InStr(b$, ".")
If d1 <> 0 Then 'break down the left and right side of the decimal point for ease of processing (this is a$)
lefta$ = Left$(a$, d1 - 1)
righta$ = Mid$(a$, d1)
Else
lefta$ = a$
End If
If d2 <> 0 Then 'break down the left and right side of the decimal point for ease of processing (this is b$)
leftb$ = Left$(b$, d2 - 1)
rightb$ = Mid$(b$, d2)
Else
leftb$ = b$
End If
'normalize the right side of our expressions
l1 = Len(righta$): l2 = Len(rightb$)
If l1 < l2 Then
addzero = l2 - l1
If l1 = 0 Then righta$ = ".": addzero = addzero - 1
righta$ = righta$ + String$(addzero, "0")
ElseIf l1 > l2 Then
addzero = l1 - l2
If l2 = 0 Then rightb$ = ".": addzero = addzero - 1
rightb$ = rightb$ + String$(addzero, "0")
End If
'strip off any plus/minus signs from the two numbers.
If Left$(lefta$, 1) = "-" Then signa$ = "-": lefta$ = Mid$(lefta$, 2)
If Left$(leftb$, 1) = "-" Then signb$ = "-": leftb$ = Mid$(leftb$, 2)
If Left$(lefta$, 1) = "+" Then signa$ = "": lefta$ = Mid$(lefta$, 2)
If Left$(leftb$, 1) = "+" Then signb$ = "": leftb$ = Mid$(leftb$, 2)
'normalize the left side of our expressions
l1 = Len(lefta$): l2 = Len(leftb$)
If l1 < l2 Then
addzero = l2 - l1
lefta$ = String$(addzero, "0") + lefta$
ElseIf l1 > l2 Then
addzero = l1 - l2
leftb$ = String$(addzero, "0") + leftb$
End If
'and then put it all together
a$ = signa$ + lefta$ + righta$
b$ = signb$ + leftb$ + rightb$
End Sub
Function N2S$ (exp$) 'scientific Notation to String
t$ = LTrim$(RTrim$(exp$))
If Left$(t$, 1) = "-" Or Left$(t$, 1) = "N" Then sign$ = "-": t$ = Mid$(t$, 2)
dp = InStr(t$, "D+"): dm = InStr(t$, "D-")
ep = InStr(t$, "E+"): em = InStr(t$, "E-")
check1 = Sgn(dp) + Sgn(dm) + Sgn(ep) + Sgn(em)
If check1 < 1 Or check1 > 1 Then N2S = exp$: Exit Function 'If no scientic notation is found, or if we find more than 1 type, it's not SN!
Select Case l 'l now tells us where the SN starts at.
Case Is < dp: l = dp
Case Is < dm: l = dm
Case Is < ep: l = ep
Case Is < em: l = em
End Select
l$ = Left$(t$, l - 1) 'The left of the SN
r$ = Mid$(t$, l + 1): r&& = Val(r$) 'The right of the SN, turned into a workable long
If InStr(l$, ".") Then 'Location of the decimal, if any
If r&& > 0 Then
r&& = r&& - Len(l$) + 2
Else
r&& = r&& + 1
End If
l$ = Left$(l$, 1) + Mid$(l$, 3)
End If
Select Case r&&
Case 0 'what the heck? We solved it already?
'l$ = l$
Case Is < 0
For i = 1 To -r&&
l$ = "0" + l$
Next
l$ = "0." + l$
Case Else
For i = 1 To r&&
l$ = l$ + "0"
Next
End Select
N2S$ = sign$ + l$
End Function
Function DWD$ (exp$) 'Deal With Duplicates
'To deal with duplicate operators in our code.
'Such as -- becomes a +
'++ becomes a +
'+- becomes a -
'-+ becomes a -
t$ = exp$
Do
bad = 0
Do
l = InStr(t$, "++")
If l Then t$ = Left$(t$, l - 1) + "+" + Mid$(t$, l + 2): bad = -1
Loop Until l = 0
Do
l = InStr(t$, "+-")
If l Then t$ = Left$(t$, l - 1) + "-" + Mid$(t$, l + 2): bad = -1
Loop Until l = 0
Do
l = InStr(t$, "-+")
If l Then t$ = Left$(t$, l - 1) + "-" + Mid$(t$, l + 2): bad = -1
Loop Until l = 0
Do
l = InStr(t$, "--")
If l Then t$ = Left$(t$, l - 1) + "+" + Mid$(t$, l + 2): bad = -1
Loop Until l = 0
Loop Until Not bad
DWD$ = t$
End Function
Presto-whammo, I autmoagically normalize my two strings so that they're the same length (minus signs which are processed independently as I showed up above.)
Since everything now lines up neatly, there's no real issue in processing them. We just grab large chunks of each string, take the value of them, and build our answer one chunk at a time until we're finished -- with the trick to efficiency being to grab as large of a chunk that we can process each time as possible.