Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Everything in Degrees instead of Radians
#15
Hey let's bounce a ball inside some regular polygons!
Code: (Select All)
Option _Explicit
_Title "Bounce Ball Inside Polygon" 'b+ 2022-10-16
Screen _NewImage(800, 600, 32) ' standard screen size 800 wide, 600 height for quick QB64 Demos with full color potential (the 32)
_ScreenMove 250, 50
Randomize Timer
_PrintMode _KeepBackground
Type lineSegment
    As Single x1, y1, x2, y2, dN ' 2 end points
End Type

' mod RegularPoly to save lines created by
Dim cx, cy, polyRadius, Dstart, SecDegrees, x1, y1, x2, y2 ' building container
Dim As _Unsigned Long PK
Dim As Long NLines, L, Container
cx = _Width / 2: cy = _Height / 2 + 40: polyRadius = 250: Dstart = 270
PK = _RGB32(0, 150, 85) ' minty green background out of bounds

startNewPoly:
NLines = Int(Rnd * 10) + 3
SecDegrees = 360 / NLines

ReDim Boundaries(1 To NLines) As lineSegment
Cls
x1 = cx + polyRadius * CosD(Dstart)
y1 = cy + polyRadius * SinD(Dstart)
For L = 1 To NLines
    x2 = cx + polyRadius * CosD(Dstart + L * SecDegrees)
    y2 = cy + polyRadius * SinD(Dstart + L * SecDegrees)
    Line (x1, y1)-(x2, y2), PK ' back to first point
    Boundaries(L).x1 = x1 ' save these line segment end points for containing the ball
    Boundaries(L).y1 = y1
    Boundaries(L).x2 = x2
    Boundaries(L).y2 = y2
    'if we take the midpoint of the two endpoints and draw a line to the center we have the normal angle of the line
    ' on the same side we want to keep the ball!
    ' midx = (x1+ x2)/2
    ' midy = (y1 + y2)/2
    ' the angle of the normal is!  Aha!
    Boundaries(L).dN = DAtan2((x1 + x2) / 2, (y1 + y2) / 2, cx, cy) ' angle from midpoint to center
    ' check angles midpoint is 22.5 degress less (for 8 sides) and going in opp direction
    ' Print Dstart + L * SecDegrees - 22.5 - 180, Boundaries(L).dN
    x1 = x2: y1 = y2
Next
Paint (1, 1), PK, PK
Print "  Yellow = the vector of ball heading towards line."
Print "  Blue = vector perpendicular (normal) to boundary line."
Print "  White = angle of refelection off line."
Print "    esc starts a different poly."
Container = _NewImage(_Width, _Height, 32)
_PutImage , 0, Container

Dim bx, by, ba, br, bspeed, hit, hitx1, hity1, hitx2, hity2, diff
bx = cx: by = cy: bspeed = 5
br = 20 ' make ball radius (br) at least 2* speed
ba = Rnd * 360 ' setup up ball in middle of screen/container random heading = ba (ball angle)

' ok just bounce ball around the polygon container
Do
    _PutImage , Container, 0
    Circle (bx, by), br ' draw ball then calc next loaction
    bx = bx + bspeed * CosD(ba) ' test x, y is new ball position if dont run into wall
    by = by + bspeed * SinD(ba)
    For L = 1 To NLines ' did we hit any?
        hit = lineIntersectCircle%(Boundaries(L).x1, Boundaries(L).y1, Boundaries(L).x2, Boundaries(L).y2, bx, by, br, hitx1, hity1, hitx2, hity2)

        ' probably should back it up before processing bounce
        If hit Then ' rebound ball
            Circle (bx, by), br
            _Display
            While hit ' back up circle
                bx = bx + CosD(ba - 180)
                by = by + SinD(ba - 180)
                hit = lineIntersectCircle%(Boundaries(L).x1, Boundaries(L).y1, Boundaries(L).x2, Boundaries(L).y2, bx, by, br, hitx1, hity1, hitx2, hity2)
                'Circle (bx, by), br
                '_Display
            Wend
            _PutImage , Container, 0
            Circle (bx, by), br

            ' Yellow arrow for incoming towards boundary (I reversed the head of arrow to compare to reflection angle)
            ArrowTo bx + 3 * br * CosD(ba + 180), by + 3 * br * SinD(ba + 180), ba, 3 * br, &HFFFFFF00

            ' Blue Vector Perpendicular to plane
            ArrowTo bx, by, Boundaries(L).dN, 5 * br, &HFF0000FF

            ' Reflected ball off line
            diff = Boundaries(L).dN - ba + 180
            ba = Boundaries(L).dN + diff ' >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> new direction
            ArrowTo bx, by, ba, 3 * br, &HFFFFFFFF

            _Display
            _Delay 1
        End If
    Next
    _Display
    _Limit 30
Loop Until _KeyDown(27)
GoTo startNewPoly

' return 0 no Intersect, 1 = tangent 1 point touch, 2 = 2 point intersect
' if intersect returns point or points of intersect ix1, iy1, ix2, iy2
' intersect points are -999 if non existent ie no intersect or 2nd point when circle is tangent
Function lineIntersectCircle% (lx1, ly1, lx2, ly2, cx, cy, r, ix1, iy1, ix2, iy2)
    Dim m, y0, A, B, C, D, x1, y1, x2, y2, ydist
    'needs    SUB slopeYintersect (X1, Y1, X2, Y2, slope, Yintercept)

    If lx1 <> lx2 Then
        slopeYintersect lx1, ly1, lx2, ly2, m, y0 ' Y0 otherwise know as y Intersect

        ' https://math.stackexchange.com/questions/228841/how-do-i-calculate-the-intersections-of-a-straight-line-and-a-circle
        A = m ^ 2 + 1
        B = 2 * (m * y0 - m * cy - cx)
        C = cy ^ 2 - r ^ 2 + cx ^ 2 - 2 * y0 * cy + y0 ^ 2
        D = B ^ 2 - 4 * A * C 'telling part of Quadratic formula = 0 then circle is tangent  or > 0 then 2 intersect points
        If D < 0 Then ' no intersection
            ix1 = -999: iy1 = -999: ix2 = -999: iy2 = -999: lineIntersectCircle% = 0
        ElseIf D = 0 Then ' one point tangent
            x1 = (-B + Sqr(D)) / (2 * A)
            y1 = m * x1 + y0
            ix1 = x1: iy1 = y1: ix2 = -999: iy2 = -999: lineIntersectCircle% = 1
        Else '2 points
            x1 = (-B + Sqr(D)) / (2 * A): y1 = m * x1 + y0
            x2 = (-B - Sqr(D)) / (2 * A): y2 = m * x2 + y0
            ix1 = x1: iy1 = y1: ix2 = x2: iy2 = y2: lineIntersectCircle% = 2
        End If
    Else 'vertical line
        If r = Abs(lx1 - cx) Then ' tangent
            ix1 = lx1: iy1 = cy: ix2 = -999: iy2 = -999: lineIntersectCircle% = 1
        ElseIf r < Abs(lx1 - cx) Then 'no intersect
            ix1 = -999: iy1 = -999: ix2 = -999: iy2 = -999: lineIntersectCircle% = 0
        Else '2 point intersect
            ydist = Sqr(r ^ 2 - (lx1 - cx) ^ 2)
            ix1 = lx1: iy1 = cy + ydist: ix2 = lx1: iy2 = cy - ydist: lineIntersectCircle% = 2
        End If
    End If
End Function

Sub slopeYintersect (X1, Y1, X2, Y2, slope, Yintercept) ' fix for when x1 = x2
    slope = (Y2 - Y1) / (X2 - X1)
    Yintercept = slope * (0 - X1) + Y1
End Sub

Sub RegularPolyFill (cx, cy, radius, nPoints, dStart, K As _Unsigned Long)
    Dim secDegrees, p, x, y, lastX, lastY, startX, startY
    secDegrees = 360 / nPoints
    For p = 1 To nPoints
        x = cx + radius * CosD(dStart + p * secDegrees)
        y = cy + radius * SinD(dStart + p * secDegrees)
        If p > 1 Then
            TriFill cx, cy, lastX, lastY, x, y, K
        Else
            startX = x: startY = y
        End If
        lastX = x: lastY = y
    Next
    TriFill cx, cy, lastX, lastY, startX, startY, K ' back to first point
End Sub

Sub RegularPoly (cx, cy, radius, nPoints, dStart, K As _Unsigned Long)
    Dim secDegrees, p, x, y, saveX, saveY
    secDegrees = 360 / nPoints
    For p = 1 To nPoints
        x = cx + radius * CosD(dStart + p * secDegrees)
        y = cy + radius * SinD(dStart + p * secDegrees)
        If p = 1 Then PSet (x, y), K: saveX = x: saveY = y Else Line -(x, y), K
    Next
    Line -(saveX, saveY), K ' back to first point
End Sub

' use angles in degrees units instead of radians (converted inside sub)
Function CosD (degrees)
    ' Note this function uses whatever the default type is, better not be some Integer Type.
    CosD = Cos(_D2R(degrees))
End Function

' use angles in degrees units instead of radians (converted inside sub)
Function SinD (degrees)
    ' Note this function uses whatever the default type is, better not be some Integer Type.
    SinD = Sin(_D2R(degrees))
End Function

' use angles in degrees units instead of radians (converted inside sub)
Function DAtan2 (x1, y1, x2, y2) ' The angle in degrees a 2nd point (x2, y2)  makes to a first point (x1, y1)
    ' Note this function uses whatever the default type is, better not be some Integer Type.
    ' Delta means change between 1 measure and another for example x2 - x1
    Dim deltaX, deltaY, rtn
    deltaX = x2 - x1
    deltaY = y2 - y1
    '  To find the angle point(x2, y2) makes to (x1, y1) in Degrees
    ' Take DegreeAngle = DAtan2(y2 - y1, x2 - x1)
    rtn = _R2D(_Atan2(deltaY, deltaX))
    If rtn < 0 Then DAtan2 = rtn + 360 Else DAtan2 = rtn
End Function

' use angles in degrees units instead of radians (converted inside sub)
Sub ArrowTo (BaseX As Long, BaseY As Long, dAngle As Double, lngth As Long, colr As _Unsigned Long)
    Dim As Long x1, y1, x2, y2, x3, y3
    Dim As Double rAngle
    rAngle = _D2R(dAngle)
    x1 = BaseX + lngth * Cos(rAngle)
    y1 = BaseY + lngth * Sin(rAngle)
    x2 = BaseX + .8 * lngth * Cos(rAngle - _Pi(.05))
    y2 = BaseY + .8 * lngth * Sin(rAngle - _Pi(.05))
    x3 = BaseX + .8 * lngth * Cos(rAngle + _Pi(.05))
    y3 = BaseY + .8 * lngth * Sin(rAngle + _Pi(.05))
    Line (BaseX, BaseY)-(x1, y1), colr
    Line (x1, y1)-(x2, y2), colr
    Line (x1, y1)-(x3, y3), colr
End Sub

' use angles in degrees units instead of radians (converted inside sub)
Sub drawArc (xc, yc, radius, dStart, dMeasure, colr As _Unsigned Long)
    ' xc, yc Center for arc circle
    ' rStart is the Radian Start Angle, use _D2R for conversion from Degrees to Radians
    ' rMeasure is the measure of Arc in Radain units, use _D2R for conversion from Degrees to Radians
    ' Arc will start at rStart and go clockwise around for rMeasure Radians

    Dim rStart, rMeasure, rEnd, stepper, a, x, y
    rStart = _D2R(dStart)
    rMeasure = _D2R(dMeasure)
    rEnd = rStart + rMeasure
    stepper = 1 / radius ' the bigger the radius the smaller  the steps
    For a = rStart To rEnd Step stepper
        x = xc + radius * Cos(a)
        y = yc + radius * Sin(a)
        If a > rStart Then Line -(x, y), colr Else PSet (x, y), colr
    Next
End Sub

''   BEST saves dest and optimized with Static a& and alpha colors work better
'2019-12-16 fix by Steve saves some time with STATIC and saves and restores last dest
Sub TriFill (x1, y1, x2, y2, x3, y3, K As _Unsigned Long) ' 2022-10-13 changed name
    Dim D As Long
    Static a&
    D = _Dest
    If a& = 0 Then a& = _NewImage(1, 1, 32)
    _Dest a&
    _DontBlend a& '  '<<<< new 2019-12-16 fix
    PSet (0, 0), K
    _Blend a& '<<<< new 2019-12-16 fix
    _Dest D
    _MapTriangle _Seamless(0, 0)-(0, 0)-(0, 0), a& To(x1, y1)-(x2, y2)-(x3, y3)
End Sub

   
b = b + ...
Reply


Messages In This Thread
RE: Everything in Degrees instead of Radians - by bplus - 10-16-2022, 12:48 PM



Users browsing this thread: 2 Guest(s)