Posts: 422
Threads: 27
Joined: Apr 2022
Reputation:
26
out of curiosity I calculated Pi to 1,000,000 digits using my math routines, it took 16.5 minutes, about 330 times longer than your routine Steve
Posts: 2,697
Threads: 327
Joined: Apr 2022
Reputation:
217
(08-22-2022, 11:44 PM)Jack Wrote: out of curiosity I calculated Pi to 1,000,000 digits using my math routines, it took 16.5 minutes, about 330 times longer than your routine Steve
You just need a bigger seed to quickly get you started on your way faster.
Posts: 2,177
Threads: 222
Joined: Apr 2022
Reputation:
104
(08-22-2022, 10:56 PM)SMcNeill Wrote: Here's my little attempt at finding Pi. This relies on some very impressive math formulas and such, but it can calculate up to a million digits of PI for us in about 1/10th of a second! (Just expect QB64 to spend quite a bit longer to print the results to screen for you than that -- our print routine isn't very quick at all!)
The program here is a little too large to fit and play nicely inside a code box, so I'll attached it below for ease of download and reference.
I hope you appreciate all the time and effort I put into this for you @Pete! I doubt you'll ever find another method any more accurate or faster than this one!!
Yeah, that code deserves a pi in the face! Lemon comes to mind.
After doing some reading, I found Ramanujan's method to be interesting, but to program it I'd have to go back in time, 50 years, and re-learn how to do factorials in linear equations. Of course, calculating it to just 6 decimal places is a snap, as at n=zero, all the factorials drop out! (exclamation point after out is a pun at factorials.) Iterations past that require two factorial computations per iteration.
Other interesting things I came across online was the other guys pi formula I experimented with in my string math routine works, but get this, it apparently takes 5 million iterations to do what Ramanujan's method does in just one; and apparently pi to six places is good enough to measure the globe within 1-meter of accuracy. Bad news, @SMcNeill . That 3-feet is coming out of your farm!!! Consider it cropped.
Pete
Posts: 422
Threads: 27
Joined: Apr 2022
Reputation:
26
Ramanujan's formula gives about 8 digits per iteration whereas the Gauss–Legendre algorithm doubles the accurate digits per iteration, the first iteration gives 2 digits then it doubles on subsequent iterations, for high precision calculation it's much faster
Posts: 422
Threads: 27
Joined: Apr 2022
Reputation:
26
08-24-2022, 02:20 AM
(This post was last modified: 08-24-2022, 02:45 AM by Jack.)
just for you Pete, here's the Ramanujan formula simplified
Code: (Select All) Function Ramanujan# ()
Dim As Double sum, f, f4, f4k, c1, c2, c3, c4, c34k
Dim As Long k, k4
c1 = 1103
c2 = 26390
c3 = 396
f = 1
f4k = 1
sum = 1103
c34k = 1
k4 = 0
c4 = c3 * c3: c4 = c4 * c4
For k = 1 To 2
f = f * k
f4 = f * f: f4 = f4 * f4
c34k = c34k * c4
f4k = f4k * (k4 + 1) * (k4 + 2) * (k4 + 3) * (k4 + 4): k4 = k4 + 4
sum = sum + (f4k * (c1 + c2 * k)) / (f4 * c34k)
Next
Ramanujan = 1 / (2 * Sqr(2) / 9801 * sum)
End Function
to calculate Pi to 1 million digits using Ramanujan would take 125000 iterations, it would take 20 iterations with the Gauss–Legendre algorithm
Posts: 2,177
Threads: 222
Joined: Apr 2022
Reputation:
104
08-25-2022, 02:06 AM
(This post was last modified: 08-25-2022, 03:25 AM by Pete.)
(08-24-2022, 02:20 AM)Jack Wrote: just for you Pete, here's the Ramanujan formula simplified
Code: (Select All) Function Ramanujan# ()
Dim As Double sum, f, f4, f4k, c1, c2, c3, c4, c34k
Dim As Long k, k4
c1 = 1103
c2 = 26390
c3 = 396
f = 1
f4k = 1
sum = 1103
c34k = 1
k4 = 0
c4 = c3 * c3: c4 = c4 * c4
For k = 1 To 2
f = f * k
f4 = f * f: f4 = f4 * f4
c34k = c34k * c4
f4k = f4k * (k4 + 1) * (k4 + 2) * (k4 + 3) * (k4 + 4): k4 = k4 + 4
sum = sum + (f4k * (c1 + c2 * k)) / (f4 * c34k)
Next
Ramanujan = 1 / (2 * Sqr(2) / 9801 * sum)
End Function
to calculate Pi to 1 million digits using Ramanujan would take 125000 iterations, it would take 20 iterations with the Gauss–Legendre algorithm
@Jack
Thanks a ton for posting this. I'm not sure how long it would take me to re-acquaint myself the factoring when applied to linear equations.
Something I found interesting when converting it to string math was the precision lacking in numeric computer math balanced out the results between the square root calculation and the other larger digit division operations. For fun, I included a way to make the string square root the same digits as the numeric one. If you un-remark that '===========================> line, you will see what I mean. The numeric and string pi numbers will no longer match to the non-greyed out decimal places.
Out of curiosity, is there a way this routine can be used to calculate pi to the next 8 digits and so on? s when in the formula, n = 0, n = 1, n = 2, etc. Increasing the k loops just doesn't seem to produce that effect tot he correct output. For instance, Ram's 22-digit 2 iteration value as per an online calculator is reported as: 3.141592653589793238462
Code: (Select All) WIDTH 160, 42
_SCREENMOVE 0, 0
DIM SHARED Ramjan$, limit&&, beta
limit&& = 16
'beta = -1
LOCATE 1, 1: PRINT "Jack's Numeric Results: ";
IF beta THEN LOCATE 5: PRINT
PRINT Ramanujan#
PRINT
LOCATE 3, 1: PRINT "Unrounded String Math Results: "; MID$(Ramjan$, 1, 17);: COLOR 8, 0: PRINT MID$(Ramjan$, 18)
COLOR 7, 0
END
FUNCTION Ramanujan# ()
DIM AS DOUBLE sum, f, f4, f4k, c1, c2, c3, c34k
DIM AS LONG k, k4
sqrt$ = "": CALL square_root("8", sqrt$, limit&&)
'sqrt$ = MID$(sqrt$, 1, 8) '=============================>
stringmatha$ = sqrt$
stringmathb$ = "9801"
operator$ = "/"
CALL string_math(stringmatha$, operator$, stringmathb$, runningtotal$, terminating_decimal%, limit&&)
numerator$ = runningtotal$
c1$ = "1103"
c2$ = "26390"
c3$ = "396"
f$ = "1"
f4k$ = "1"
sum$ = "1103"
c34k$ = "1"
k4$ = "0"
'----------------------
c1 = 1103
c2 = 26390
c3 = 396
f = 1
f4k = 1
sum = 1103
c34k = 1
k4 = 0
'----------------------
stringmatha$ = c3$
FOR i = 1 TO 3
stringmathb$ = c3$
operator$ = "*"
CALL string_math(stringmatha$, operator$, stringmathb$, runningtotal$, terminating_decimal%, limit&&)
stringmatha$ = runningtotal$
NEXT
c3$ = runningtotal$: c3 = c3 * c3 * c3 * c3
IF beta THEN PRINT "c3^4 = "; runningtotal$, c3
stringmatha$ = c3$
stringmathb$ = "9801"
operator$ = "/"
CALL string_math(stringmatha$, operator$, stringmathb$, runningtotal$, terminating_decimal%, limit&&)
numerator$ = runningtotal$
IF beta THEN PRINT "c3^4 / 9801 = "; runningtotal$, c3 / 9801
FOR k = 1 TO 2
stringmatha$ = f$
stringmathb$ = LTRIM$(STR$(k))
operator$ = "*"
CALL string_math(stringmatha$, operator$, stringmathb$, runningtotal$, terminating_decimal%, limit&&)
f$ = runningtotal$: f = f * (k)
stringmatha$ = f$
stringmathb$ = f$
operator$ = "*"
CALL string_math(stringmatha$, operator$, stringmathb$, runningtotal$, terminating_decimal%, limit&&)
f4$ = runningtotal$
stringmathb$ = runningtotal$
CALL string_math(stringmatha$, operator$, stringmathb$, runningtotal$, terminating_decimal%, limit&&)
f4$ = runningtotal$: f4 = f * f: f4 = f4 * f4
stringmatha$ = c34k$
stringmathb$ = c3$
operator$ = "*"
CALL string_math(stringmatha$, operator$, stringmathb$, runningtotal$, terminating_decimal%, limit&&)
c34k$ = runningtotal$: c34k = c34k * c3
stringmatha$ = f$
stringmathb$ = LTRIM$(STR$(k))
operator$ = "*"
CALL string_math(stringmatha$, operator$, stringmathb$, runningtotal$, terminating_decimal%, limit&&)
f$ = runningtotal$: f = f * k
'-------------------------
REDIM k4$(4): k4$(0) = k4$
FOR i = 1 TO 4
stringmatha$ = k4$(i - 1)
stringmathb$ = "1"
operator$ = "+"
CALL string_math(stringmatha$, operator$, stringmathb$, runningtotal$, terminating_decimal%, limit&&)
k4$(i) = runningtotal$
NEXT
FOR i = 1 TO 4
stringmatha$ = f4k$
stringmathb$ = k4$(i)
operator$ = "*"
CALL string_math(stringmatha$, operator$, stringmathb$, runningtotal$, terminating_decimal%, limit&&)
f4k$ = runningtotal$
NEXT
f4k = f4k * (k4 + 1) * (k4 + 2) * (k4 + 3) * (k4 + 4)
' Increase k4$ variable.
stringmatha$ = k4$
stringmathb$ = "4"
operator$ = "+"
CALL string_math(stringmatha$, operator$, stringmathb$, runningtotal$, terminating_decimal%, limit&&)
k4$ = runningtotal$: k4 = k4 + 4
' Calculate sum.
stringmatha$ = c2$
stringmathb$ = LTRIM$(STR$(k))
operator$ = "*"
CALL string_math(stringmatha$, operator$, stringmathb$, runningtotal$, terminating_decimal%, limit&&)
stringmatha$ = runningtotal$
stringmathb$ = c1$
IF beta THEN PRINT: PRINT "String variables c2$ k$: "; runningtotal$, c1$, " Numeric variables:"; (c2 * k), c1
operator$ = "+"
CALL string_math(stringmatha$, operator$, stringmathb$, runningtotal$, terminating_decimal%, limit&&)
stringmatha$ = runningtotal$
stringmathb$ = f4k$
operator$ = "*"
CALL string_math(stringmatha$, operator$, stringmathb$, runningtotal$, terminating_decimal%, limit&&)
term1$ = runningtotal$
stringmatha$ = f4$
stringmathb$ = c34k$
operator$ = "*"
CALL string_math(stringmatha$, operator$, stringmathb$, runningtotal$, terminating_decimal%, limit&&)
term2$ = runningtotal$
stringmatha$ = term1$
stringmathb$ = term2$
operator$ = "/"
CALL string_math(stringmatha$, operator$, stringmathb$, runningtotal$, terminating_decimal%, limit&&)
IF beta THEN
PRINT
COLOR 4
PRINT "term1$ / term2$: "; term1$; " / "; term2$
PRINT "term1 / term2: "; ((c2 * k) + c1) * f4k; "/"; c34k * f4
PRINT "String division = "; runningtotal$, "Numeric division ="; ((c2 * k) + c1) / c34k * f4
COLOR 7, 0
END IF
stringmatha$ = runningtotal$
stringmathb$ = sum$
operator$ = "+"
CALL string_math(stringmatha$, operator$, stringmathb$, runningtotal$, terminating_decimal%, limit&&)
sum$ = runningtotal$
sum = sum + (f4k * (c1 + c2 * (k))) / (f4 * c34k)
IF beta THEN
PRINT
COLOR 2, 0: PRINT "String SQR(8) = "; sqrt$, " Numeric 2 * SQR(2) ="; 2 * SQR(2)
PRINT "String sum$ = "; sum$, " Numeric sum ="; sum
stringmatha$ = "9801"
stringmathb$ = sum$
operator$ = "*"
CALL string_math(stringmatha$, operator$, stringmathb$, runningtotal$, terminating_decimal%, limit&&)
PRINT "String 9801 * sum$ = "; runningtotal$, "Numeric 9801 * sum ="; 9801 * sum
COLOR 7, 0
END IF
NEXT
stringmatha$ = sqrt$
stringmathb$ = "9801"
operator$ = "/"
CALL string_math(stringmatha$, operator$, stringmathb$, runningtotal$, terminating_decimal%, limit&&)
stringmatha$ = runningtotal$
IF beta THEN COLOR 6, 0: PRINT: PRINT "String sqr 8 / 9801: "; runningtotal$, " Numeric 2 * SQR(2) / 9801 ="; (2 * SQR(2)) / 9801
stringmathb$ = sum$
operator$ = "*"
CALL string_math(stringmatha$, operator$, stringmathb$, runningtotal$, terminating_decimal%, limit&&)
IF beta THEN PRINT "String denominator:"; runningtotal$, " Numeric denominator: "; (2 * SQR(2) / 9801 * sum)
stringmatha$ = "1"
stringmathb$ = runningtotal$
operator$ = "/"
CALL string_math(stringmatha$, operator$, stringmathb$, runningtotal$, terminating_decimal%, limit&&)
IF beta THEN PRINT "String pi = "; runningtotal$, " Numeric pi ="; 1 / (2 * SQR(2) / 9801 * sum): COLOR 7, 0
Ramjan$ = runningtotal$
IF beta THEN LOCATE 1, 28
Ramanujan = 1 / (SQR(8) / 9801 * sum)
END FUNCTION
SUB square_root (x$, sqrt$, limit&&)
oldy$ = ""
IF INSTR(x$, ".") THEN
decx$ = MID$(x$, 1, INSTR(x$, ".") - 1)
x$ = MID$(x$, 1, INSTR(x$, ".") - 1) + MID$(x$, INSTR(x$, ".") + 1)
IF LEN(x$) = 1 THEN x$ = x$ + "0"
ELSE
decx$ = x$
END IF
j&& = LEN(decx$)
' VAL() okay, one character eval.
IF VAL(RIGHT$(LTRIM$(STR$(j&&)), 1)) / 2 = VAL(RIGHT$(LTRIM$(STR$(j&&)), 1)) \ 2 THEN
i&& = 1 ' Even number length.
ELSE
i&& = 0 ' Odd number length.
END IF
DO
stringmatha$ = z$: stringmathb$ = k$
string_math z$, "-", k$, runningtotal$, terminating_decimal%, limit&&
z$ = runningtotal$ + (MID$(x$, i&&, 2))
IF LEFT$(z$, 1) = "0" THEN z$ = MID$(z$, 2) ' Remove leading zeros
oldy$ = ""
FOR j&& = 1 TO 10
IF i&& > 1 THEN
string_math sqrt$, "*", "2", y$, terminating_decimal%, limit&&
y$ = y$ + LTRIM$(STR$(j&&))
ELSE
y$ = LTRIM$(STR$(j&&))
END IF
string_math y$, "*", LTRIM$(STR$(j&&)), runningtotal$, terminating_decimal%, limit&&
string_compare runningtotal$, z$, gl%
IF gl% > -1 THEN
IF gl% = 0 THEN
h% = 0: oldy$ = y$ ' Perfect square division.
ELSE
h% = 1
END IF
string_math oldy$, "*", LTRIM$(STR$(j&& - h%)), runningtotal$, terminating_decimal%, limit&&
IF STRING$(LEN(z$), "0") = z$ AND runningtotal$ = "0" AND i&& >= LEN(decx$) THEN EXIT DO
IF dp&& = 0 THEN ' Limited to && size unless converted to string.
IF i&& >= LEN(decx$) THEN
dp&& = INT(LEN(decx$) / 2 + .5)
IF dp&& = 0 THEN dp&& = -1
END IF
END IF
IF betatest% THEN PRINT "Sqrt "; sqrt$; " * 2 = ";: COLOR 2, 0: PRINT LTRIM$(STR$(VAL(sqrt$) * 2));: COLOR 7, 0: PRINT LTRIM$(STR$(j&& - h%)); " * "; LTRIM$(STR$(j&& - h%)); " ="; VAL(oldy$) * (j&& - h%)
sqrt$ = sqrt$ + LTRIM$(STR$(j&& - h%))
string_math oldy$, "*", LTRIM$(STR$(j&& - h%)), runningtotal$, terminating_decimal%, limit&&
k$ = runningtotal$
IF betatest% THEN PRINT "Remainder "; z$; " minus "; k$; " = ";
EXIT FOR
END IF
oldy$ = y$
NEXT
IF betatest% THEN
string_math stringmatha$, "-", stringmathb$, runningtotal$, terminating_decimal%, limit&&
PRINT runningtotal$; " sqrt = "; sqrt$
END IF
i&& = i&& + 2
IF LEN(z$) >= limit&& THEN EXIT DO
x$ = x$ + "00"
LOOP
IF dp&& THEN
sqrt$ = MID$(sqrt$, 0, dp&& + 1) + "." + MID$(sqrt$, dp&& + 1)
END IF
END SUB
SUB string_math (stringmatha$, operator$, stringmathb$, runningtotal$, terminating_decimal%, limit&&)
DIM AS _INTEGER64 a, c, aa, cc, s, ss
SELECT CASE operator$
CASE "+", "-"
GOSUB string_add_subtract_new
CASE "*"
GOSUB string_multiply_new
CASE "/"
GOSUB string_divide
CASE ELSE
PRINT "Error, no operator selected. operator$ = "; operator$: END
END SELECT
EXIT SUB
string_divide:
terminating_decimal% = 0: divsign% = 0: divremainder& = 0: divremainder$ = "": divplace& = 0: divplace2& = 0: quotient$ = "": divcarry& = 0
divbuffer& = LEN(stringmathb$) - LEN(stringmatha$)
IF divbuffer& < 0 THEN divbuffer& = 0
d2dividend$ = stringmatha$
d1divisor$ = stringmathb$
IF LEFT$(d1divisor$, 1) = "0" AND LEN(d1divisor$) = 1 THEN PRINT "Division by zero not allowed.": divsign% = 0: EXIT SUB
IF LEFT$(d1divisor$, 1) = "-" THEN divsign% = -1: d1divisor$ = MID$(d1divisor$, 2)
IF LEFT$(d2dividend$, 1) = "-" THEN
IF divsign% THEN
divsign% = 0
ELSE
divsign% = -1
END IF
d2dividend$ = MID$(d2dividend$, 2)
END IF
IF INSTR(d1divisor$, ".") <> 0 THEN
DO UNTIL RIGHT$(d1divisor$, 1) <> "0"
d1divisor$ = MID$(d1divisor$, 1, LEN(d1divisor$) - 1) ' Strip off trailing zeros
LOOP
divplace& = LEN(d1divisor$) - INSTR(d1divisor$, ".")
d1divisor$ = MID$(d1divisor$, 1, INSTR(d1divisor$, ".") - 1) + MID$(d1divisor$, INSTR(d1divisor$, ".") + 1) ' Strip off decimal point.
DO UNTIL LEFT$(d1divisor$, 1) <> "0"
d1divisor$ = MID$(d1divisor$, 2) ' Strip off leading zeros for divisors smaller than .1
LOOP
END IF
IF INSTR(d2dividend$, ".") <> 0 THEN
d2dividend$ = d2dividend$ + STRING$(divplace& - LEN(d2dividend$) - INSTR(d2dividend$, "."), "0") ' Add any zeros based on the length of dividend at decimal - length of divisor at decimal. If less than zero, nothing added.
divplace2& = INSTR(d2dividend$, ".")
DO UNTIL RIGHT$(d2dividend$, 1) <> "0"
d2dividend$ = MID$(d2dividend$, 1, LEN(d2dividend$) - 1) ' Strip off trailing zeros
LOOP
d2dividend$ = MID$(d2dividend$, 1, INSTR(d2dividend$, ".") - 1) + MID$(d2dividend$, INSTR(d2dividend$, ".") + 1) ' Strip off decimal point.
ELSE
d2dividend$ = d2dividend$ + STRING$(divplace&, "0") ' Add any zeros based on the length of dividend at decimal - length of divisor at decimal. If less than zero, nothing added.
divplace& = 0
END IF
DO
DO
divremainder& = divremainder& + 1: divremainder$ = divremainder$ + MID$(d2dividend$, divremainder&, 1)
IF MID$(d2dividend$, divremainder&, 1) = "" THEN
IF divremainder$ = STRING$(LEN(divremainder$), "0") AND LEN(quotient$) > LEN(d2dividend$) THEN
divflag% = -1
terminating_decimal% = -1
EXIT DO
END IF
divcarry& = divcarry& + 1
IF divcarry& = 1 THEN divplace3& = divremainder& - 1
IF divcarry& > limit&& + 1 + divbuffer& THEN
divflag% = -2: EXIT DO
END IF
divremainder$ = divremainder$ + "0" ' No more digits to bring down.
END IF
IF LEN(divremainder$) > LEN(d1divisor$) OR LEN(divremainder$) = LEN(d1divisor$) AND divremainder$ >= d1divisor$ THEN EXIT DO
quotient$ = quotient$ + "0"
LOOP
IF divflag% THEN divflag% = 0: EXIT DO
FOR div_i% = 9 TO 1 STEP -1
stringmatha$ = LTRIM$(STR$(div_i%)): stringmathb$ = d1divisor$
GOSUB string_multiply_new ' Gets runningtotal$
tempcutd$ = divremainder$ ' divremainder$ can be 00 or other leading zero values.
DO
IF LEN(tempcutd$) = 1 THEN EXIT DO
IF LEFT$(tempcutd$, 1) = "0" THEN
tempcutd$ = MID$(tempcutd$, 2)
ELSE
EXIT DO
END IF
LOOP
IF LEN(tempcutd$) > LEN(runningtotal$) OR LEN(tempcutd$) = LEN(runningtotal$) AND runningtotal$ <= tempcutd$ THEN EXIT FOR
NEXT
quotient$ = quotient$ + LTRIM$(STR$(div_i%))
stringmatha$ = LTRIM$(STR$(div_i%)): stringmathb$ = d1divisor$
GOSUB string_multiply_new ' Gets runningtotal$
stringmatha$ = divremainder$: stringmathb$ = runningtotal$
operator$ = "-": GOSUB string_add_subtract_new
divremainder$ = runningtotal$
LOOP
IF divplace& = 0 AND divplace2& = 0 THEN divplace& = divplace3&
IF divplace2& THEN divplace& = divplace& + divplace2& - 1
IF quotient$ = "" THEN divplace& = 0 ' dividend is zero.
IF divplace& OR divplace2& THEN
quotient$ = MID$(quotient$, 1, divplace&) + "." + MID$(quotient$, divplace& + 1)
DO UNTIL RIGHT$(quotient$, 1) <> "0"
quotient$ = MID$(quotient$, 1, LEN(quotient$) - 1) ' Strip off trailing zeros
LOOP
IF RIGHT$(quotient$, 1) = "." THEN quotient$ = MID$(quotient$, 1, LEN(quotient$) - 1) ' Strip off abandoned decimal.
END IF
DO UNTIL LEFT$(quotient$, 1) <> "0"
quotient$ = MID$(quotient$, 2) ' Strip off leading zeros
LOOP
IF quotient$ = "" THEN quotient$ = "0": divsign% = 0
stringmathb$ = quotient$: quotient$ = ""
IF stringmathb$ = "overflow" THEN divsign% = 0: EXIT SUB
runningtotal$ = stringmathb$: stringmathb$ = ""
IF divsign% THEN runningtotal$ = "-" + runningtotal$
IF stringmathround$ <> "" THEN runningtotal$ = runningtotal$ + stringmathround$
RETURN
string_add_subtract_new:
a1$ = stringmatha$: b1$ = stringmathb$
s = 18: i&& = 0: c = 0
a$ = stringmatha$: b$ = stringmathb$: op$ = operator$
IF op$ = "-" THEN
IF LEFT$(b$, 1) = "-" THEN b$ = MID$(b$, 2) ELSE b$ = "-" + b$
END IF
IF INSTR(a$, ".") <> 0 OR INSTR(b$, ".") <> 0 THEN
decimal% = -1
IF INSTR(a$, ".") <> 0 THEN
dec_a&& = LEN(MID$(a$, INSTR(a$, ".") + 1))
a$ = MID$(a$, 1, INSTR(a$, ".") - 1) + MID$(a$, INSTR(a$, ".") + 1)
END IF
IF INSTR(b$, ".") <> 0 THEN
dec_b&& = LEN(MID$(b$, INSTR(b$, ".") + 1))
b$ = MID$(b$, 1, INSTR(b$, ".") - 1) + MID$(b$, INSTR(b$, ".") + 1)
END IF
' Line up decimal places by inserting trailing zeros.
IF dec_b&& > dec_a&& THEN
j&& = dec_b&&
a$ = a$ + STRING$(dec_b&& - dec_a&&, "0")
ELSE
j&& = dec_a&&
b$ = b$ + STRING$(dec_a&& - dec_b&&, "0")
END IF
END IF
IF LEFT$(a$, 1) = "-" OR LEFT$(b$, 1) = "-" THEN
IF LEFT$(a$, 1) = "-" AND LEFT$(b$, 1) = "-" THEN
sign$ = "--": a$ = MID$(a$, 2): b$ = MID$(b$, 2)
ELSE
IF LEFT$(a$, 1) = "-" THEN a$ = MID$(a$, 2): sign_a$ = "-"
IF LEFT$(b$, 1) = "-" THEN b$ = MID$(b$, 2): sign_b$ = "-"
IF LEFT$(a1$, 1) = "-" THEN a1_x$ = MID$(a1$, 2) ELSE a1_x$ = a1$
IF LEFT$(b1$, 1) = "-" THEN b1_x$ = MID$(b1$, 2) ELSE b1_x$ = b1$
string_compare a1_x$, b1_x$, gl%
IF gl% < 0 THEN
IF LEN(sign_b$) THEN sign$ = "-": SWAP a$, b$
ELSE
IF LEN(sign_a$) THEN sign$ = "-": SWAP sign_a$, sign_b$
END IF
END IF
END IF
z$ = ""
DO
i&& = i&& + s
x1$ = MID$(a$, LEN(a$) - i&& + 1, s)
x2$ = MID$(b$, LEN(b$) - i&& + 1, s)
zeros% = LEN(x1$): IF LEN(x2$) > zeros% THEN zeros% = LEN(x2$)
a = VAL(sign_a$ + x1$) + VAL(sign_b$ + x2$) + c
IF x1$ + x2$ = "" AND c = 0 THEN EXIT DO
c = 0
IF a > VAL(STRING$(s, "9")) THEN a = a - 10 ^ s: c = 1
IF a < 0 THEN a = a + 10 ^ s: c = -1
tmp$ = LTRIM$(STR$(a))
z$ = STRING$(zeros% - LEN(tmp$), "0") + tmp$ + z$
LOOP
IF decimal% THEN
z$ = MID$(z$, 1, LEN(z$) - j&&) + "." + MID$(z$, LEN(z$) - j&& + 1)
END IF
' Remove any leading zeros.
DO
IF LEFT$(z$, 1) = "0" THEN z$ = MID$(z$, 2) ELSE EXIT DO
LOOP
IF z$ = "" OR z$ = "0" THEN z$ = "0" ELSE z$ = LEFT$(sign$, 1) + z$
runningtotal$ = z$
sign$ = "": sign_a$ = "": sign_b$ = "": i&& = 0: j&& = 0: decimal% = 0: c = 0
RETURN
string_multiply_new:
z$ = "": sign$ = "": mult&& = 0: h&& = 0: i&& = 0: j&& = 0: c = 0: decimal% = 0
zz$ = "": ii&& = 0: jj&& = 0
s = 8: ss = 18
a$ = stringmatha$: b$ = stringmathb$
IF INSTR(a$, "-") <> 0 OR INSTR(b$, "-") <> 0 THEN
IF INSTR(a$, "-") <> 0 AND INSTR(b$, "-") <> 0 THEN
a$ = MID$(a$, 2): b$ = MID$(b$, 2)
ELSE
IF INSTR(a$, "-") <> 0 THEN a$ = MID$(a$, 2) ELSE b$ = MID$(b$, 2)
sign$ = "-"
END IF
END IF
IF INSTR(a$, ".") <> 0 OR INSTR(b$, ".") <> 0 THEN
decimal% = -1
IF INSTR(a$, ".") <> 0 THEN
dec_a&& = LEN(MID$(a$, INSTR(a$, ".") + 1))
a$ = MID$(a$, 1, INSTR(a$, ".") - 1) + MID$(a$, INSTR(a$, ".") + 1)
END IF
IF INSTR(b$, ".") <> 0 THEN
dec_b&& = LEN(MID$(b$, INSTR(b$, ".") + 1))
b$ = MID$(b$, 1, INSTR(b$, ".") - 1) + MID$(b$, INSTR(b$, ".") + 1)
END IF
END IF
IF LEN(a$) < LEN(b$) THEN SWAP a$, b$ ' Needed so x1$ is always the largest for leading zero replacements.
DO
h&& = h&& + s: i&& = 0
x2$ = MID$(b$, LEN(b$) - h&& + 1, s)
WHILE -1
i&& = i&& + s
x1$ = MID$(a$, LEN(a$) - i&& + 1, s)
a = VAL(sign_a$ + x1$) * VAL(sign_b$ + x2$) + c
c = 0
tmp$ = LTRIM$(STR$(a))
IF LEN(tmp$) > s THEN c = VAL(MID$(tmp$, 1, LEN(tmp$) - s)): tmp$ = MID$(tmp$, LEN(tmp$) - s + 1)
z$ = STRING$(LEN(x1$) - LEN(tmp$), "0") + tmp$ + z$
IF i&& >= LEN(a$) AND c = 0 THEN EXIT WHILE
WEND
jj&& = jj&& + 1
IF jj&& > 1 THEN
ii&& = 0: cc = 0
aa$ = holdaa$
bb$ = z$ + STRING$((jj&& - 1) * s, "0")
DO
ii&& = ii&& + ss
xx1$ = MID$(aa$, LEN(aa$) - ii&& + 1, ss)
xx2$ = MID$(bb$, LEN(bb$) - ii&& + 1, ss)
aa = VAL(xx1$) + VAL(xx2$) + cc
IF xx1$ + xx2$ = "" AND cc = 0 THEN EXIT DO ' Prevents leading zeros.
cc = 0
IF aa > VAL(STRING$(ss, "9")) THEN aa = aa - 10 ^ ss: cc = 1
tmp$ = LTRIM$(STR$(aa))
zz$ = STRING$(LEN(xx1$) - LEN(tmp$), "0") + tmp$ + zz$
LOOP
DO WHILE LEFT$(zz$, 1) = "0"
IF LEFT$(zz$, 1) = "0" THEN zz$ = MID$(zz$, 2)
LOOP
IF zz$ = "" THEN zz$ = "0"
holdaa$ = zz$
ELSE
holdaa$ = z$ + STRING$(jj&& - 1, "0")
END IF
z$ = "": zz$ = ""
LOOP UNTIL h&& >= LEN(b$)
z$ = holdaa$
IF decimal% THEN
DO UNTIL LEN(z$) >= dec_a&& + dec_b&&
z$ = "0" + z$
LOOP
z$ = MID$(z$, 0, LEN(z$) - (dec_a&& + dec_b&& - 1)) + "." + MID$(z$, LEN(z$) - (dec_a&& + dec_b&&) + 1)
DO UNTIL RIGHT$(z$, 1) <> "0" AND RIGHT$(z$, 1) <> "."
z$ = MID$(z$, 1, LEN(z$) - 1)
LOOP
END IF
IF z$ = "" OR z$ = "0" THEN z$ = "0" ELSE z$ = sign$ + z$
decimal% = 0: sign$ = ""
runningtotal$ = z$
RETURN
END SUB
SUB string_compare (compa$, compb$, gl%)
DO
' Remove trailing zeros after a decimal point.
IF INSTR(compa$, ".") THEN
DO UNTIL RIGHT$(compa$, 1) <> "0" AND RIGHT$(compa$, 1) <> "." AND RIGHT$(compa$, 1) <> "-"
compa$ = MID$(compa$, 1, LEN(compa$) - 1)
LOOP
END IF
IF INSTR(compb$, ".") THEN
DO UNTIL RIGHT$(compb$, 1) <> "0" AND RIGHT$(compb$, 1) <> "." AND RIGHT$(compb$, 1) <> "-"
compb$ = MID$(compb$, 1, LEN(compb$) - 1)
LOOP
END IF
IF MID$(compa$, 1, 2) = "-0" OR compa$ = "" OR compa$ = "-" THEN compa$ = "0"
IF MID$(compb$, 1, 2) = "-0" OR compb$ = "" OR compb$ = "-" THEN compb$ = "0"
' A - and +
IF LEFT$(compa$, 1) = "-" THEN j% = -1
IF LEFT$(compb$, 1) = "-" THEN k% = -1
IF k% = 0 AND j% THEN gl% = -1: EXIT DO
IF j% = 0 AND k% THEN gl% = 1: EXIT DO
' A decimal and non-decimal.
j% = INSTR(compa$, ".")
k% = INSTR(compb$, ".")
IF j% = 0 AND k% THEN
IF compa$ = "0" THEN gl% = -1 ELSE gl% = 1
EXIT DO
END IF
IF k% = 0 AND j% THEN
IF compb$ = "0" THEN gl% = 1 ELSE gl% = -1
EXIT DO
END IF
' Both decimals.
IF j% THEN
IF compa$ > compb$ THEN
gl% = 1
ELSEIF compa$ = compb$ THEN gl% = 0
ELSEIF compa$ < compb$ THEN gl% = -1
END IF
EXIT DO
END IF
' Both positive or both negative whole numbers.
SELECT CASE LEN(compa$)
CASE IS < LEN(compb$)
gl% = -1
CASE IS = LEN(compb$)
IF compa$ = compb$ THEN
gl% = 0
ELSEIF compa$ > compb$ THEN gl% = 1
ELSEIF compa$ < compb$ THEN gl% = -1
END IF
CASE IS > LEN(compb$)
gl% = 1
END SELECT
EXIT DO
LOOP
END SUB
Pete
Posts: 422
Threads: 27
Joined: Apr 2022
Reputation:
26
08-25-2022, 11:43 AM
(This post was last modified: 08-25-2022, 11:47 AM by Jack.)
Pete
I converted the Ramanujan Pi routine to use Treebeard's string-math, maybe you can adapt it to use your string-math routines
Code: (Select All) Dim As String n, m, c, sum, f, f4, f4k, c1, c2, c3, c34k, t1, t2, t3
Dim As Long k, k4
Dim t As Double
t = Timer
digits% = 100
bInit
c1 = "1103"
c2 = "26390"
c3 = "396"
f = "1"
f4k = "1"
sum = "1103"
c34k = "1"
k4 = 0
t1 = c3
t2 = c3
bMul t1, t2, c3 'result in c3
t1 = c3
t2 = c3
bMul t1, t2, c3 'result in c3
For k = 1 To digits% / 7.984
t1 = f: bMul Str$(k), t1, f 'result in f
t1 = f: t2 = f
bMul t1, t2, f4 'result in f4
t1 = f4: t2 = f4
bMul t1, t2, f4 'result in f4
t1 = c34k
bMul c3, t1, c34k 'result in c34k
t1 = Str$(k4 + 1)
t2 = f4k
bMul t1, t2, f4k 'result in f4k
t1 = Str$(k4 + 2)
t2 = f4k
bMul t1, t2, f4k 'result in f4k
t1 = Str$(k4 + 3)
t2 = f4k
bMul t1, t2, f4k 'result in f4k
t1 = Str$(k4 + 4)
t2 = f4k
bMul t1, t2, f4k 'result in f4k
k4 = k4 + 4
t1 = Str$(k)
bMul t1, c2, t2 'result in t2
bAdd c1, t2, t1 'result in t1
bMul f4k, t1, t2 'result in t2
bMul f4, c34k, t1 'result in t1
bDiv t2, t1, t3 'result in t3
t1 = sum
bAdd t1, t3, sum 'result in sum
Next
bSqr "8", t1 'result in t1
t2 = "9801"
bDiv t1, t2, t3 'result in t3
bMul t3, sum, t2 'result in t2
bDiv t1, t2, t3 'result in t3
bDiv "1", t2, t1 'result in t1
Print t1
t = Timer - t
Posts: 1,002
Threads: 50
Joined: May 2022
Reputation:
27
Your endless string formulas are too complicated and cumbersome. There I get headdache.
If one implement the formulas it is short and concise. I have now implemented a guide for C++ (running) in C. It's Chudnovsky's formula for pi, but it won't work in QB64. Does anyone see where the error is? - I suspect it has to do with "pi += ..." - maybe.
Chudnovskys Pi formula in C
Code: (Select All) //PI nach Cudnowsky - https://stackoverflow.com/questions/12028313/c-chudnovsky-formula-for-pi
//24. Aug. 2022, in C 25. Aug. 2022
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
long double fac(double num);
int main(void)
{
long double pi = 0.0;
for (double k = 0.0; k < 10.0; k++)
{
pi += (pow(-1.0, k) * fac(6.0 * k) * (13591409.0 + (545140134.0 * k)))
/ (fac(3.0 * k) * pow(fac(k), 3.0) * pow(640320.0, 3.0 * k + 3.0/2.0));
}
pi *= 12.0;
__mingw_printf("%.12Lf\n\n", 1.0 / pi);
return 0;
}
long double fac(double num)
{
double result = 1.0;
for (double i = 2.0; i < num; i++)
{ result *= i; }
return result;
}
That has to be! Unfortunately there is no explanation why.
Code: (Select All) __mingw_printf("%.12Lf\n\n", 1.0 / pi);
Chudnovskys Pi formula in QB64
Code: (Select All) 'Pi nach Chudnovsky berechnen - 25. Aug. 2022
Option _Explicit
Declare Function fac (num as Double) as Double
Dim As Double pi, k
pi = 0.0: k = 0.0
While k < 10.0
k = k + 1.0
pi = pi + (-1.0 ^ k) * fac(6.0 * k) * (13591409.0 + (545140134.0 * k)) / fac(3.0 * k) * fac(k) ^ 3.0 * 640320.0 ^ 3.0 * k + (3.0 / 2.0)
'pi = pi + pi
Wend
pi = pi * 12.0
Print
Print 1.0 / pi
End
Function fac (num As Double)
Dim As Double resultat, i
resultat = 1.0: i = 2.0
While i < num
i = i + i
resultat = resultat * i
Wend
fac = resultat
End Function
Posts: 1,586
Threads: 59
Joined: Jul 2022
Reputation:
52
^
|
|
Why not just "printf" instead of "__mingw_printf"? Because you're including "stdio.h" then "printf()" should be available. I tried to compile your program as it was, "gcc" asked me if I meant "builtin_printf()" or alike. After I forgot what option for linker so it links to math library...
Posts: 2,177
Threads: 222
Joined: Apr 2022
Reputation:
104
(08-25-2022, 11:43 AM)Jack Wrote: Pete
I converted the Ramanujan Pi routine to use Treebeard's string-math, maybe you can adapt it to use your string-math routines
Code: (Select All) Dim As String n, m, c, sum, f, f4, f4k, c1, c2, c3, c34k, t1, t2, t3
Dim As Long k, k4
Dim t As Double
t = Timer
digits% = 100
bInit
c1 = "1103"
c2 = "26390"
c3 = "396"
f = "1"
f4k = "1"
sum = "1103"
c34k = "1"
k4 = 0
t1 = c3
t2 = c3
bMul t1, t2, c3 'result in c3
t1 = c3
t2 = c3
bMul t1, t2, c3 'result in c3
For k = 1 To digits% / 7.984
t1 = f: bMul Str$(k), t1, f 'result in f
t1 = f: t2 = f
bMul t1, t2, f4 'result in f4
t1 = f4: t2 = f4
bMul t1, t2, f4 'result in f4
t1 = c34k
bMul c3, t1, c34k 'result in c34k
t1 = Str$(k4 + 1)
t2 = f4k
bMul t1, t2, f4k 'result in f4k
t1 = Str$(k4 + 2)
t2 = f4k
bMul t1, t2, f4k 'result in f4k
t1 = Str$(k4 + 3)
t2 = f4k
bMul t1, t2, f4k 'result in f4k
t1 = Str$(k4 + 4)
t2 = f4k
bMul t1, t2, f4k 'result in f4k
k4 = k4 + 4
t1 = Str$(k)
bMul t1, c2, t2 'result in t2
bAdd c1, t2, t1 'result in t1
bMul f4k, t1, t2 'result in t2
bMul f4, c34k, t1 'result in t1
bDiv t2, t1, t3 'result in t3
t1 = sum
bAdd t1, t3, sum 'result in sum
Next
bSqr "8", t1 'result in t1
t2 = "9801"
bDiv t1, t2, t3 'result in t3
bMul t3, sum, t2 'result in t2
bDiv t1, t2, t3 'result in t3
bDiv "1", t2, t1 'result in t1
Print t1
t = Timer - t
Nice. Tested it to 50-digits. All but the last digit matches, but that's just rounding on the online comparison. The final digit is always suspect, so the results match through digit 49, perfectly.
Code: (Select All) WIDTH 160, 42
_SCREENMOVE 0, 0
' Treebeard's String Math +-*/
CONST neg$ = "-"
CONST negative = -1
CONST positive = 1
CONST asc0 = 48
CONST dp$ = "."
CONST zero$ = "0"
CONST one$ = "1"
CONST two$ = "2"
CONST three$ = "3"
CONST four$ = "4"
CONST five$ = "5"
CONST False = 0
CONST True = -1
CONST basechr = "@"
CONST basesep$ = ","
CONST maxlongdig = 8
CONST emem = 32
CONST memget = 0
CONST memput = 1
CONST defaultdigits = 30
CONST maxmem = 35
CONST maxstack = 10
CONST minconst = 30
CONST maxconst = 35
CONST pimem = 30
CONST pi2mem = 31
CONST phimem = 33
CONST ln10mem = 34
CONST ln2mem = 35
CONST memclr = 2
'useful shared stuff, initialize these in bInit()
DIM SHARED errormsg$, abortmsg$, Error$, bmem$(maxmem), out$
DIM SHARED zmem$(maxstack), cname$(maxconst)
DIM SHARED bncpath$, prmcntfile$
DIM SHARED digits%, zstack%
'Prime count table data
DIM maxprmcnt%
DIM prmcnt&
'--------------------------------------------
DIM AS STRING n, m, c, sum, f, f4, f4k, c1, c2, c3, c34k, t1, t2, t3
DIM AS LONG k, k4
DIM t AS DOUBLE
t = TIMER
digits% = 50
bInit
c1 = "1103"
c2 = "26390"
c3 = "396"
f = "1"
f4k = "1"
sum = "1103"
c34k = "1"
k4 = 0
t1 = c3
t2 = c3
bMul t1, t2, c3 'result in c3
t1 = c3
t2 = c3
bMul t1, t2, c3 'result in c3
FOR k = 1 TO digits% / 7.984
t1 = f: bMul STR$(k), t1, f 'result in f
t1 = f: t2 = f
bMul t1, t2, f4 'result in f4
t1 = f4: t2 = f4
bMul t1, t2, f4 'result in f4
t1 = c34k
bMul c3, t1, c34k 'result in c34k
t1 = STR$(k4 + 1)
t2 = f4k
bMul t1, t2, f4k 'result in f4k
t1 = STR$(k4 + 2)
t2 = f4k
bMul t1, t2, f4k 'result in f4k
t1 = STR$(k4 + 3)
t2 = f4k
bMul t1, t2, f4k 'result in f4k
t1 = STR$(k4 + 4)
t2 = f4k
bMul t1, t2, f4k 'result in f4k
k4 = k4 + 4
t1 = STR$(k)
bMul t1, c2, t2 'result in t2
bAdd c1, t2, t1 'result in t1
bMul f4k, t1, t2 'result in t2
bMul f4, c34k, t1 'result in t1
bDiv t2, t1, t3 'result in t3
t1 = sum
bAdd t1, t3, sum 'result in sum
oldt1$ = t1: oldt3$ = t3: oldsum$ = sum
CALL pi(t1, sum, k)
t1 = oldt1$: t3 = oldt3$: sum = oldsum$
NEXT
COLOR 14, 0: PRINT "Ramanujan pi = 3.1415926535897932384626433832795028841971693993751"
COLOR 7, 0
t = TIMER - t
END
SUB pi (t1$, sum$, k)
bSqr "8", t1$ 'result in t1
t2$ = "9801"
bDiv t1$, t2$, t3$ 'result in t3
bMul t3$, sum$, t2$ 'result in t2
bDiv t1$, t2$, t3$ 'result in t3
bDiv "1", t2$, t1$ 'result in t1
PRINT "loop #"; LTRIM$(STR$(k));: LOCATE , 10: PRINT " pi = "; t1$
END SUB
SUB bAdd (s1$, s2$, out$)
DIM last1%, dp1%, sign1%, last2%, dp2%, sign2%
DIM last%, d1%, d2%, dpt%, carry%
DIM i%, n%
'strip the numbers
bStripDp s1$, last1%, dp1%, sign1%
bStripDp s2$, last2%, dp2%, sign2%
'treat different signs as subtraction and exit
IF sign1% = negative AND sign2% = positive THEN
bSub s2$, s1$, out$
bNeg s1$
EXIT SUB
ELSEIF sign1% = positive AND sign2% = negative THEN
bSub s1$, s2$, out$
bNeg s2$
EXIT SUB
END IF
'align the decimal points and digit pointers
last% = bMaxInt%(last1% - dp1%, last2% - dp2%)
d1% = last% + dp1%
d2% = last% + dp2%
dpt% = bMaxInt%(dp1%, dp2%)
last% = dpt% + last%
out$ = SPACE$(last%)
carry% = 0
'do the addition right to left
FOR i% = last% TO 1 STEP -1
IF i% <> dpt% THEN
n% = carry%
IF d1% > 0 THEN n% = n% + VAL(MID$(s1$, d1%, 1))
IF d2% > 0 THEN n% = n% + VAL(MID$(s2$, d2%, 1))
carry% = n% \ 10
MID$(out$, i%, 1) = CHR$(asc0 + (n% MOD 10))
ELSE
MID$(out$, i%, 1) = dp$
END IF
d1% = d1% - 1
d2% = d2% - 1
NEXT i%
IF carry% THEN out$ = one$ + out$
'clean up
IF sign1% = negative THEN s1$ = neg$ + s1$: s2$ = neg$ + s2$: out$ = neg$ + out$
bClean s1$
bClean s2$
bClean out$
END SUB
SUB bSub (s1$, s2$, out$)
DIM last1%, dp1%, sign1%
DIM last2%, dp2%, sign2%
DIM last%, d1%, d2%, dpt%, borrow%, swapflag%
DIM i%, n%
'strip the numbers
bStripDp s1$, last1%, dp1%, sign1%
bStripDp s2$, last2%, dp2%, sign2%
'treat different signs as addition
IF sign1% = negative AND sign2% = positive THEN
bNeg s1$
bNeg s2$
bAdd s1$, s2$, out$
bNeg s2$
EXIT SUB
ELSEIF sign1% = positive AND sign2% = negative THEN
bAdd s1$, s2$, out$
bNeg s2$
EXIT SUB
END IF
'align the decimal points and digit pointers
last% = bMaxInt%(last1% - dp1%, last2% - dp2%)
d1% = last% + dp1%
d2% = last% + dp2%
dpt% = bMaxInt%(dp1%, dp2%)
last% = dpt% + last%
out$ = SPACE$(last%)
borrow% = 0
'always subtract smaller from bigger to avoid complements
IF bIsMore%(s2$, s1$) THEN
bSwapString s1$, s2$
bSwapInt d2%, d1%
swapflag% = True
END IF
'do the subtraction right to left
FOR i% = last% TO 1 STEP -1
IF i% <> dpt% THEN
IF d1% > 0 THEN n% = VAL(MID$(s1$, d1%, 1)) ELSE n% = 0
IF d2% > 0 THEN n% = n% - VAL(MID$(s2$, d2%, 1))
n% = n% - borrow%
IF n% >= 0 THEN borrow% = 0 ELSE borrow% = 1: n% = n% + 10
MID$(out$, i%, 1) = CHR$(asc0 + n%)
ELSE
MID$(out$, i%, 1) = dp$
END IF
d1% = d1% - 1
d2% = d2% - 1
NEXT i%
'clean up
IF sign1% = negative THEN s1$ = neg$ + s1$: s2$ = neg$ + s2$
IF swapflag% THEN
bSwapString s1$, s2$
sign1% = -sign1%
END IF
IF sign1% = negative THEN out$ = neg$ + out$
bClean s1$
bClean s2$
bClean out$
END SUB
SUB bSqr (s$, out$)
DIM dvd$, div$, dig$, newdiv$, t$, z$
DIM slog%, ssign%, slen%, spt%, olddigits%, n%, m%
IF bIsNeg%(s$) THEN out$ = errormsg$: EXIT SUB
'strip to whole number + group digits by 2 left or right of decimal
bLogGet s$, slog%, ssign%, True
slen% = LEN(s$)
IF slog% MOD 2 THEN spt% = 2 ELSE spt% = 1
'Force at least enough digits to show integer of root
olddigits% = digits%
n% = 1 + slog% \ 2
IF digits% < n% THEN digits% = n%
'figure first digit and setup loop
n% = VAL(LEFT$(s$ + "0", spt%))
m% = INT(SQR(n%))
out$ = LTRIM$(STR$(m%))
dvd$ = LTRIM$(STR$(n% - m% * m%))
spt% = spt% + 1
DO
'all done?
IF (spt% > slen% AND bIsZero%(dvd$)) OR LEN(out$) >= digits% THEN EXIT DO
'append next 2 digits (or 0s) to dividend
dvd$ = dvd$ + LEFT$(MID$(s$, spt%, 2) + "00", 2)
spt% = spt% + 2
'divisor=twice the root * 10
z$ = out$
bAdd out$, z$, div$
bShift div$, 1
'estimate divisor, and adjust if too big. Unit is next digit of root.
bDivInt dvd$, div$, dig$
DO
bAdd div$, dig$, newdiv$
bMul newdiv$, dig$, t$
IF NOT bIsMore%(t$, dvd$) THEN EXIT DO
bInc dig$, -1
LOOP
out$ = out$ + dig$
'form new divisor
z$ = dvd$
bSub z$, t$, dvd$
LOOP
'clean up
bLogPut s$, slog%, ssign%
IF slog% < 0 THEN slog% = slog% - 1
bLogPut out$, slog% \ 2, ssign%
digits% = olddigits%
END SUB
SUB bMul (s1$, s2$, out$)
DIM t$
DIM slog1%, sign1%, slog2%, sign2%, outdp%, outsign%, outlog%, swapflag%
'strip multiplier
t$ = s2$
bLogGet t$, slog2%, sign2%, True
'times 0
IF t$ = zero$ THEN
out$ = zero$
'do powers of 10 with shifts
ELSEIF t$ = one$ THEN
out$ = s1$
sign1% = bSign%(out$)
IF sign1% = negative THEN bAbs out$
bShift out$, slog2%
IF sign1% <> sign2% THEN bNeg out$
'the hard way
ELSE
'strip all
s2$ = t$: t$ = ""
bLogGet s1$, slog1%, sign1%, True
'figure decimal point and sign of answer
outdp% = bLogDp%(s1$, slog1%) + bLogDp%(s2$, slog2%)
IF sign1% <> sign2% THEN outsign% = negative ELSE outsign% = positive
'always multiply by the shorter number
IF LEN(s2$) > LEN(s1$) THEN bSwapString s1$, s2$: swapflag% = True
'do it
IF LEN(s2$) <= maxlongdig THEN bMulLong s1$, s2$, out$ ELSE bMulChar s1$, s2$, out$
'clean up
outlog% = bLogDp%(out$, outdp%)
bLogPut out$, outlog%, outsign%
IF swapflag% THEN bSwapString s1$, s2$
bLogPut s1$, slog1%, sign1%
bLogPut s2$, slog2%, sign2%
END IF
END SUB
SUB bMulChar (s1$, s2$, out$)
DIM last1%, last2%, last%
DIM i%, j%, k%, sj%, ej%
DIM product&
last1% = LEN(s1$)
last2% = LEN(s2$)
last% = last1% + last2%
out$ = SPACE$(last%)
product& = 0
FOR i% = 0 TO last% - 1
k% = last1% - i%
sj% = 1 - k%: IF sj% < 0 THEN sj% = 0
ej% = last1% - k%: IF ej% > last2% - 1 THEN ej% = last2% - 1
FOR j% = sj% TO ej%
product& = product& + VAL(MID$(s1$, k% + j%, 1)) * VAL(MID$(s2$, last2% - j%, 1))
NEXT j%
MID$(out$, last% - i%, 1) = CHR$(asc0 + CINT(product& MOD 10&))
product& = product& \ 10&
NEXT i%
IF product& THEN out$ = LTRIM$(STR$(product&)) + out$
END SUB
SUB bMulLong (s1$, s2$, out$)
DIM last1%, i%
DIM s2val&, product&
last1% = LEN(s1$)
s2val& = VAL(s2$)
out$ = SPACE$(last1%)
FOR i% = last1% TO 1 STEP -1
product& = product& + VAL(MID$(s1$, i%, 1)) * s2val&
MID$(out$, i%, 1) = CHR$(asc0 + CINT(product& MOD 10&))
product& = product& \ 10&
NEXT i%
IF product& THEN out$ = LTRIM$(STR$(product&)) + out$
END SUB
SUB bDivLong (s1$, s2$, quotient$, remainder$)
DIM rmdr&, dividend&, divisor&
DIM dig%, i%
quotient$ = ""
rmdr& = 0
divisor& = VAL(s2$)
FOR i% = 1 TO digits%
dividend& = rmdr& * 10& + VAL(MID$(s1$, i%, 1))
dig% = dividend& \ divisor&
quotient$ = quotient$ + CHR$(asc0 + dig%)
rmdr& = dividend& - dig% * divisor&
NEXT i%
IF LEN(quotient$) = 0 THEN quotient$ = zero$
remainder$ = LTRIM$(STR$(rmdr&))
END SUB
SUB bDiv (s1$, s2$, out$)
DIM t$
DIM slog1%, sign1%, slog2%, sign2%
DIM outlog%, outsign%, olddigits%
'strip divisor
t$ = s2$
bLogGet t$, slog2%, sign2%, True
'divide by zero?
IF t$ = zero$ THEN
out$ = Error$
'do powers of 10 with shifts
ELSEIF t$ = one$ THEN
out$ = s1$
sign1% = bSign%(out$)
IF sign1% = negative THEN bAbs out$
bShift out$, -slog2%
IF sign1% <> sign2% THEN bNeg out$
'the hard way
ELSE
'strip all
s2$ = t$: t$ = ""
bLogGet s1$, slog1%, sign1%, True
'figure decimal point and sign of answer
outlog% = slog1% + bLogDp%(s2$, slog2%)
IF sign1% <> sign2% THEN outsign% = negative ELSE outsign% = positive
'bump digits past leading zeros and always show whole quotient
olddigits% = digits%
digits% = digits% + LEN(s2$)
IF digits% < outlog% + 1 THEN digits% = outlog% + 1
'do it, ignore remainder
IF LEN(s2$) <= maxlongdig THEN bDivLong s1$, s2$, out$, t$ ELSE bDivChar s1$, s2$, out$, t$
'clean up
bLogPut out$, outlog%, outsign%
bLogPut s1$, slog1%, sign1%
bLogPut s2$, slog2%, sign2%
digits% = olddigits%
END IF
END SUB
SUB bDivChar (s1$, s2$, quotient$, remainder$)
DIM last1%, last2%, ldvd%, lrem%, dig%, borrow%
DIM i%, j%, n%
DIM dvd$
last1% = LEN(s1$) 'length of the dividend
last2% = LEN(s2$) 'length of the divisor
quotient$ = ""
remainder$ = ""
FOR i% = 1 TO digits%
'get next digit of dividend or zero$ if past end
IF i% <= last1% THEN
dvd$ = remainder$ + MID$(s1$, i%, 1)
ELSE
dvd$ = remainder$ + zero$
END IF
'if dividend < divisor then digit%=0 else have to calculate it.
'do fast compare using string operations. see bComp%()
bStripZero dvd$
ldvd% = LEN(dvd$)
IF (ldvd% < last2%) OR ((ldvd% = last2%) AND (dvd$ < s2$)) THEN
'divisor is bigger, so digit is 0, easy!
dig% = 0
remainder$ = dvd$
ELSE
'dividend is bigger, but no more than 9 times bigger.
'subtract divisor until we get remainder less than divisor.
'time hog, average is 5 tries through j% loop. There's a better way.
FOR dig% = 1 TO 9
remainder$ = ""
borrow% = 0
FOR j% = 0 TO ldvd% - 1
n% = last2% - j%
IF n% < 1 THEN n% = 0 ELSE n% = VAL(MID$(s2$, n%, 1))
n% = VAL(MID$(dvd$, ldvd% - j%, 1)) - n% - borrow%
IF n% >= 0 THEN borrow% = 0 ELSE borrow% = 1: n% = n% + 10
remainder$ = CHR$(asc0 + n%) + remainder$
NEXT j%
'if remainder < divisor then exit
bStripZero remainder$
lrem% = LEN(remainder$)
IF (lrem% < last2%) OR ((lrem% = last2%) AND (remainder$ < s2$)) THEN EXIT FOR
dvd$ = remainder$
ldvd% = LEN(dvd$)
NEXT dig%
END IF
quotient$ = quotient$ + CHR$(asc0 + dig%)
NEXT i%
END SUB
SUB bLogGet (s$, slog%, sign%, zeroflag%)
DIM dpt%, n%
IF LEFT$(s$, 1) = neg$ THEN s$ = MID$(s$, 2): sign% = negative ELSE sign% = positive
bStripZero s$
dpt% = INSTR(s$, dp$)
SELECT CASE dpt%
CASE 0
slog% = LEN(s$) - 1
CASE 1
n% = dpt% + 1
DO WHILE MID$(s$, n%, 1) = zero$
n% = n% + 1
LOOP
s$ = MID$(s$, n%)
slog% = dpt% - n%
CASE ELSE
s$ = LEFT$(s$, dpt% - 1) + MID$(s$, dpt% + 1)
slog% = dpt% - 2
END SELECT
'remove trailing 0's if zeroflag%
IF zeroflag% THEN bStripTail s$
END SUB
SUB bLogPut (s$, slog%, sign%)
DIM last%
last% = LEN(s$)
IF LEN(s$) = 0 OR s$ = zero$ THEN
s$ = zero$
ELSEIF slog% < 0 THEN
s$ = dp$ + STRING$(-slog% - 1, zero$) + s$
ELSEIF slog% > last% - 1 THEN
s$ = s$ + STRING$(slog% - last% + 1, zero$) + dp$
ELSE
s$ = LEFT$(s$, slog% + 1) + dp$ + MID$(s$, slog% + 2)
END IF
bClean s$
IF sign% = negative THEN s$ = neg$ + s$
END SUB
SUB bInt (s$)
DIM n%
n% = INSTR(s$, dp$)
IF n% THEN
IF n% = 1 THEN s$ = zero$ ELSE s$ = LEFT$(s$, n% - 1)
IF s$ = neg$ OR LEFT$(s$, 2) = "-." THEN s$ = zero$
END IF
END SUB
SUB bInit ()
DIM i%
'a few defaults
'digits% = defaultdigits
errormsg$ = "error"
abortmsg$ = "abort"
'clear memory
zstack% = 0
FOR i% = 0 TO maxmem
bmem$(i%) = zero$
NEXT i%
FOR i% = 1 TO maxstack
zmem$(i%) = zero$
NEXT i%
'useful constants
cname$(pimem) = "pi": bmem$(pimem) = "3.14159265358979323846264338327"
cname$(pi2mem) = "2pi": bmem$(pi2mem) = "6.28318530717958647692528676654"
cname$(emem) = "e": bmem$(emem) = "2.71828182845904523536028747135"
cname$(phimem) = "phi": bmem$(phimem) = "1.61803398874989484820458683436"
cname$(ln10mem) = "ln(10)": bmem$(ln10mem) = "2.30258509299404568401799145468"
cname$(ln2mem) = "ln(2)": bmem$(ln2mem) = ".693147180559945309417232121458"
bncpath$ = "" 'path for files (or current dir if null)
prmcntfile$ = "BNPRMCNT.DAT" 'prime count table
' LoadPrimeTable
END SUB
SUB bStr (s$, out$)
DIM t$
DIM n%, i%
n% = INSTR(s$, ".")
IF n% THEN t$ = MID$(s$, n% + 1) ELSE t$ = RIGHT$(s$, 1)
out$ = ""
FOR i% = 1 TO VAL(s$)
out$ = t$ + out$
NEXT i%
IF LEN(out$) = 0 THEN out$ = zero$
END SUB
'Trim leading spaces, add decimal points, eliminate signs.
'Returns last%=length of string, dpt%=decimal place, sign%=-1 or 1.
'Called only by bAdd() and bSub() which needs a final decimal point.
'
SUB bStripDp (s$, last%, dpt%, sign%)
IF LEFT$(s$, 1) = neg$ THEN s$ = MID$(s$, 2): sign% = negative ELSE sign% = positive
bStripZero s$
IF INSTR(s$, dp$) = 0 THEN s$ = s$ + dp$
IF s$ = dp$ THEN s$ = "0."
dpt% = INSTR(s$, dp$)
last% = LEN(s$)
END SUB
'Strip trailing 0s to "." (but leave something)
'
SUB bStripTail (s$)
DIM n%
n% = LEN(s$)
DO WHILE MID$(s$, n%, 1) = zero$
n% = n% - 1
IF n% <= 1 THEN EXIT DO
LOOP
IF n% THEN IF MID$(s$, n%, 1) = dp$ THEN n% = n% - 1
s$ = LEFT$(s$, n%)
IF LEN(s$) = 0 THEN s$ = zero$
END SUB
'Strip leading 0s and final "." (but leave something)
'
SUB bStripZero (s$)
DIM n%
n% = 1
DO WHILE MID$(s$, n%, 1) = zero$
n% = n% + 1
LOOP
IF n% > 1 THEN s$ = MID$(s$, n%)
IF RIGHT$(s$, 1) = dp$ THEN s$ = LEFT$(s$, LEN(s$) - 1)
IF LEN(s$) = 0 THEN s$ = zero$
END SUB
SUB bNeg (s$)
IF LEFT$(s$, 1) = neg$ THEN s$ = MID$(s$, 2) ELSE s$ = neg$ + s$
END SUB
SUB bClean (s$)
DIM sign%
IF LEFT$(s$, 1) = neg$ THEN s$ = MID$(s$, 2): sign% = True
bStripZero s$
IF INSTR(s$, dp$) THEN bStripTail s$
IF sign% AND s$ <> zero$ THEN s$ = neg$ + s$
END SUB
SUB bSwapInt (s1%, s2%)
DIM t%
t% = s1%
s1% = s2%
s2% = t%
END SUB
SUB bSwapString (s1$, s2$)
DIM t$
t$ = s1$
s1$ = s2$
s2$ = t$
END SUB
SUB bShift (s$, n%)
DIM slog%, sign%
bLogGet s$, slog%, sign%, False
bLogPut s$, slog% + n%, sign%
END SUB
SUB bDivInt (s1$, s2$, out$)
DIM t$
bDivIntMod s1$, s2$, out$, t$
END SUB
SUB bDivIntMod (s1$, s2$, quotient$, remainder$)
DIM slog1%, sign1%, slog2%, sign2%
DIM olddigits%, outlog%, outsign%
olddigits% = digits%
'strip the numbers, set flag false to NOT trim zeros, slower but needed
bLogGet s2$, slog2%, sign2%, False
IF s2$ = zero$ THEN quotient$ = Error$: remainder$ = Error$: EXIT SUB
bLogGet s1$, slog1%, sign1%, False
'figure decimal point and sign of answer
outlog% = slog1% + bLogDp%(s2$, slog2%)
IF sign1% <> sign2% THEN outsign% = negative ELSE outsign% = positive
'a trick: figure the decimal and only find that many digits
digits% = outlog% + 1
'send the work out
IF LEN(s2$) <= maxlongdig THEN bDivLong s1$, s2$, quotient$, remainder$ ELSE bDivChar s1$, s2$, quotient$, remainder$
'clean up
bLogPut s1$, slog1%, sign1%
bLogPut s2$, slog2%, sign2%
bClean quotient$
bClean remainder$
IF sign1% <> sign2% THEN bNeg quotient$
digits% = olddigits%
END SUB
SUB bInc (s$, num%)
DIM dig%, n%, borrow%
IF num% = 0 THEN EXIT SUB
dig% = INSTR(s$, dp$)
IF dig% THEN dig% = dig% - 1 ELSE dig% = LEN(s$)
n% = num%
IF n% > 0 THEN 'increment (n>0)
DO WHILE n%
IF dig% < 1 THEN
s$ = LTRIM$(STR$(n%)) + s$
n% = 0
ELSE
n% = n% + VAL(MID$(s$, dig%, 1))
MID$(s$, dig%, 1) = CHR$(asc0 + (n% MOD 10))
n% = n% \ 10
dig% = dig% - 1
END IF
LOOP
ELSE 'decrement (n<0)
n% = -n%
DO WHILE n%
IF dig% < 1 THEN s$ = zero$: EXIT DO
borrow% = 0
n% = VAL(MID$(s$, dig%, 1)) - n%
DO WHILE n% < 0
n% = n% + 10: borrow% = borrow% + 1
LOOP
MID$(s$, dig%, 1) = CHR$(asc0 + n%)
n% = borrow%
dig% = dig% - 1
LOOP
END IF
bStripZero s$
END SUB
SUB bAbs (s$)
IF LEFT$(s$, 1) = neg$ THEN s$ = MID$(s$, 2)
END SUB
SUB bMod (s1$, s2$, out$)
DIM t$
bDivIntMod s1$, s2$, t$, out$
END SUB
SUB bModPower (s1$, s2$, s3$, out$)
'Use variation of "Russian Peasant Method" to figure m=(c^d) mod n.
'Byte, Jan 83, p.206.
'test value: (71611947 ^ 63196467) mod 94815109 = 776582
'm=1
'do
' if d is odd then m=(m*c) mod n
' c=(c*c) mod n
' d=int(d/2)
'loop while d>0
'm is the answer
DIM c$, d$, z$, w$
STATIC n$ 'remember modulus for next call
'positive numbers only, modulus must be >1! Find mod inverse if s2=-1.
out$ = errormsg$
IF LEN(s3$) THEN n$ = s3$
IF bIsNeg%(s1$) OR bIsNeg%(n$) THEN EXIT SUB
IF bIsNeg%(s2$) THEN
IF bIsEqual%(s2$, "-1") THEN bModInv s1$, n$, out$
EXIT SUB
END IF
c$ = s1$
d$ = s2$
out$ = one$
DO
IF bIsOdd%(d$) THEN
z$ = out$
bMul z$, c$, out$
z$ = out$
bMod z$, n$, out$
END IF
z$ = c$
w$ = c$
bMul z$, w$, c$
z$ = c$
bMod z$, n$, c$
z$ = d$
bDivInt z$, two$, d$
LOOP UNTIL bIsZero%(d$)
END SUB
SUB bModInv (s1$, s2$, out$)
DIM g0$, g1$, g2$, v0$, v1$, v2$, y$, t$, z$
IF NOT bIsRelPrime%(s1$, s2$) THEN out$ = zero$: EXIT SUB
g0$ = s2$: g1$ = s1$
v0$ = zero$: v1$ = one$
DO UNTIL bIsZero%(g1$)
bDivInt g0$, g1$, y$
bMul y$, g1$, t$
bSub g0$, t$, g2$
bMul y$, v1$, t$
bSub v0$, t$, v2$
g0$ = g1$: g1$ = g2$
v0$ = v1$: v1$ = v2$
LOOP
out$ = v0$
IF bIsNeg%(out$) THEN
z$ = out$
bAdd z$, s2$, out$
END IF
END SUB
SUB bGCD (s1$, s2$, out$)
DIM div$, dvd$, t$
'work with copies
div$ = s1$
dvd$ = s2$
IF bIsMore%(div$, dvd$) THEN bSwapString div$, dvd$
DO UNTIL bIsZero%(div$)
bMod dvd$, div$, t$
dvd$ = div$
div$ = t$
LOOP
out$ = dvd$
END SUB
SUB bSqrInt (s$, out$)
DIM t$
DIM olddigits%
IF bIsNeg%(s$) THEN out$ = errormsg$: EXIT SUB
t$ = s$
bInt t$
'a trick: let bSqr() figure the decimal and only find that many digits
olddigits% = digits%
digits% = 0
bSqr t$, out$
digits% = olddigits%
END SUB
FUNCTION bIsBase% (s$)
bIsBase% = INSTR(UCASE$(s$), basechr$)
END FUNCTION
'return true if s1 divides s2
'
FUNCTION bIsDiv% (s1$, s2$)
DIM t$
bMod s2$, s1$, t$
bIsDiv% = (t$ = zero$)
END FUNCTION
'return true if s1 = s2
'
FUNCTION bIsEqual% (s1$, s2$)
bIsEqual% = (s1$ = s2$)
END FUNCTION
'return true if s$ is even, no decimals!
'
FUNCTION bIsEven% (s$)
bIsEven% = (VAL(RIGHT$(s$, 1)) MOD 2 = 0)
END FUNCTION
'return true if s in an integer (no decimal point).
'
FUNCTION bIsInteger% (s$)
bIsInteger% = (INSTR(s$, dp$) = 0)
END FUNCTION
'return true if s1 < s2
'
FUNCTION bIsLess% (s1$, s2$)
bIsLess% = (bComp%(s1$, s2$) = -1)
END FUNCTION
FUNCTION bComp% (s1$, s2$)
DIM s1flag%, s2flag%, sign1%, sign2%
DIM dp1%, dp2%, arg%
'kludge to fix 0<.1
IF LEFT$(s1$, 1) = dp$ THEN s1$ = zero$ + s1$: s1flag% = True
IF LEFT$(s2$, 1) = dp$ THEN s2$ = zero$ + s2$: s2flag% = True
sign1% = (LEFT$(s1$, 1) = neg$)
sign2% = (LEFT$(s2$, 1) = neg$)
dp1% = INSTR(s1$, dp$): IF dp1% = 0 THEN dp1% = LEN(s1$) + 1
dp2% = INSTR(s2$, dp$): IF dp2% = 0 THEN dp2% = LEN(s2$) + 1
IF sign1% <> sign2% THEN
IF sign1% THEN arg% = -1 ELSE arg% = 1
ELSEIF s1$ = s2$ THEN
arg% = 0
ELSEIF (dp1% < dp2%) OR ((dp1% = dp2%) AND (s1$ < s2$)) THEN
arg% = -1
ELSE
arg% = 1
END IF
IF sign1% AND sign2% THEN arg% = -arg%
IF s1flag% THEN s1$ = MID$(s1$, 2)
IF s2flag% THEN s2$ = MID$(s2$, 2)
bComp% = arg%
END FUNCTION
'return true if s1 > s2
'
FUNCTION bIsMore% (s1$, s2$)
bIsMore% = (bComp%(s1$, s2$) = 1)
END FUNCTION
'return true if s is negative
'
FUNCTION bIsNeg% (s$)
bIsNeg% = (LEFT$(s$, 1) = neg$)
END FUNCTION
FUNCTION bIsNotZero% (s$)
DIM flag%, i%
flag% = False
FOR i% = 1 TO LEN(s$)
IF INSTR("0-. ", MID$(s$, i%, 1)) = False THEN flag% = True: EXIT FOR
NEXT i%
bIsNotZero% = flag%
END FUNCTION
'return true if odd
'
FUNCTION bIsOdd% (s$)
bIsOdd% = (VAL(RIGHT$(s$, 1)) MOD 2 <> 0)
END FUNCTION
'return true if s is prime
'
FUNCTION bIsPrime% (s$)
bIsPrime% = (bPrmDiv$(s$, False) = s$)
END FUNCTION
's is pseudoprime to base b if (b,s)=1 and b^(s-1)=1 (mod s). Integers only!
'
FUNCTION bIsPseudoPrime% (s$, bas$)
DIM t$, smin$
DIM flag%
flag% = False
IF bIsRelPrime%(s$, bas$) THEN
smin$ = s$: bInc smin$, -1
bModPower bas$, smin$, s$, t$
flag% = (t$ = one$)
END IF
bIsPseudoPrime% = flag%
END FUNCTION
'return true if s1 and s2 are relatively prime, ie share no factor
'
FUNCTION bIsRelPrime% (s1$, s2$)
DIM gcd$
bGCD s1$, s2$, gcd$
bIsRelPrime% = bIsEqual%(gcd$, one$)
END FUNCTION
'Return true if s$ is zero$ or null, s$ needn't be clean.
'
FUNCTION bIsZero% (s$)
DIM flag%, i%
flag% = True
FOR i% = 1 TO LEN(s$)
IF INSTR("0-. ", MID$(s$, i%, 1)) = False THEN flag% = False: EXIT FOR
NEXT i%
bIsZero% = flag%
END FUNCTION
FUNCTION bSign% (s$)
IF bIsNeg%(s$) THEN bSign% = negative ELSE bSign% = positive
END FUNCTION
FUNCTION bLogDp% (s$, logdp%)
bLogDp% = LEN(s$) - 1 - logdp%
END FUNCTION
FUNCTION bPrmDiv$ (s$, dspflag%)
DIM num$, sfac$, maxfac$, t$
DIM lfac&, lnum&, lmaxfac&, ldfac&
DIM i%, cnt%, flag%, dfac%
num$ = s$
bInt num$
bAbs num$
IF LEN(num$) <= maxlongdig THEN GOSUB bpdLong ELSE GOSUB bpdChar
EXIT FUNCTION
bpdChar:
'try some classic divisibility tests for small factors.
'Cf Gardner, Unexpected Hanging, p.160.
'by 2?
' If dspflag% Then
' frmBncFactor.lblTryNum.Caption = two$
' frmBncFactor.lblTryNum.Refresh
'End If
IF VAL(RIGHT$(num$, 1)) MOD 2 = 0 THEN bPrmDiv$ = two$: RETURN
'by 3?
'IF dspflag% THEN LOCATE , dspflag%: PRINT three$;
' If dspflag% Then
' frmBncFactor.lblTryNum.Caption = three$
' frmBncFactor.lblTryNum.Refresh
'End If
lfac& = 0
FOR i% = 1 TO LEN(num$)
lfac& = lfac& + ASC(MID$(num$, i%, 1)) - asc0
NEXT i%
IF lfac& MOD 3 = 0 THEN bPrmDiv$ = three$: RETURN
'by 5?
'IF dspcol% THEN LOCATE , dspcol%: PRINT five$;
' If dspflag% Then
' frmBncFactor.lblTryNum.Caption = five$
' frmBncFactor.lblTryNum.Refresh
'End If
IF VAL(RIGHT$(num$, 1)) MOD 5 = 0 THEN bPrmDiv$ = five$: RETURN
'by 7, 11, or 13?
'IF dspcol% THEN LOCATE , dspcol%: PRINT "7+";
' If dspflag% Then
' frmBncFactor.lblTryNum.Caption = "7+"
' frmBncFactor.lblTryNum.Refresh
'End If
lfac& = 0
i% = LEN(num$) + 1
cnt% = 3
flag% = True
DO
i% = i% - 3: IF i% < 1 THEN cnt% = i% + 2: i% = 1
IF flag% THEN
lfac& = lfac& + VAL(MID$(num$, i%, cnt%))
ELSE
lfac& = lfac& - VAL(MID$(num$, i%, cnt%))
END IF
flag% = NOT flag%
LOOP WHILE i% > 1
IF lfac& MOD 7 = 0 THEN bPrmDiv$ = "7": RETURN
IF lfac& MOD 11 = 0 THEN bPrmDiv$ = "11": RETURN
IF lfac& MOD 13 = 0 THEN bPrmDiv$ = "13": RETURN
'main loop, increment factor by 2 or 4.
sfac$ = "17"
dfac% = 2
bSqrInt num$, maxfac$
DO
'IF dspcol% THEN LOCATE , dspcol%: PRINT sfac$;
' If dspflag% Then
' frmBncFactor.lblTryNum.Caption = sfac$
' frmBncFactor.lblTryNum.Refresh
'End If
bMod num$, sfac$, t$
IF bIsZero%(t$) THEN EXIT DO
bInc sfac$, dfac%
dfac% = 6 - dfac%
IF bIsMore%(sfac$, maxfac$) THEN sfac$ = num$: EXIT DO
'If INKEY$ = esc$ Then sfac$ = zero$: Exit Do
LOOP
bPrmDiv$ = sfac$
RETURN
bpdLong:
lnum& = VAL(num$)
IF lnum& <= 1 THEN
lfac& = 1&
ELSEIF lnum& MOD 2& = 0& THEN
lfac& = 2&
ELSEIF lnum& MOD 3& = 0& THEN
lfac& = 3&
ELSE
lmaxfac& = INT(SQR(lnum&))
lfac& = 5&
ldfac& = 2&
DO
'IF dspcol% THEN LOCATE , dspcol%: PRINT lfac&;
' If dspflag% Then
' frmBncFactor.lblTryNum.Caption = LTrim$(Str$(lfac&))
' frmBncFactor.lblTryNum.Refresh
'End If
IF lnum& MOD lfac& = 0& THEN EXIT DO
lfac& = lfac& + ldfac&
ldfac& = 6& - ldfac&
IF lfac& > lmaxfac& THEN lfac& = lnum&: EXIT DO
LOOP
END IF
bPrmDiv$ = LTRIM$(STR$(lfac&))
RETURN
END FUNCTION
FUNCTION bMaxInt% (n1%, n2%)
IF n1% >= n2% THEN bMaxInt% = n1% ELSE bMaxInt% = n2%
END FUNCTION
@Jack
+2 to you, and if anyone wants Treebeard's string math just for +-*/ and square root, this is the stripped down routine, which provides that.
Pete
|