Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Space Pongy
#1
I was playing around with the paddle that you can angle with Mouse Wheel and thought it might be fun to do a Pongy style game with it like Ken's, so here it is!

Use mouse wheel to angle paddle either to bounce ball into Spaceship Or keep ball away from the Death Star.
You score a point when ball hits towards center of ship and lose a ball if Death Star runs into ball. You get 5 balls per game.

Code: (Select All)
_Title "Space Pongy" 'b+ started 2020-03-08  from _vince idea  Angle Paddle Collision
' 2024-11-29 Make game in style of Ken's Pongy

Const xmax = 800, ymax = 600, xc = 400, yc = 300
Dim Shared P, P2, Pd2
P = _Pi: P2 = 2 * P: Pd2 = P / 2

Dim Shared sx, sy, srI, srO, snP, sa, sdx, sdy ' death Star
Screen _NewImage(xmax, ymax, 32)
_ScreenMove 280, 60
Randomize Timer

bx = xc: by = yc: br = 20: bs = 5: ba = _D2R(60): ball = 5
mr = 50: ma = 0

goalx = 325: goaly = 80
goaldir = 2
NewStar
While _KeyDown(27) = 0
    Cls
    drawShip goalx, goaly, 2, &HFFFFFF00
    goalx = goalx + goaldir
    If goalx > 700 And goaldir = 2 Then goaldir = -2
    If goalx < 100 And goaldir = -2 Then goaldir = 2
    If _Hypot(bx - goalx, by - goaly) < br + 40 Then
        score = score + 1: bx = _Width - goalx: by = _Height - goaly: ba = _Pi(2) * Rnd
        For snd = 300 To 900 Step 50
            Sound snd, .5
        Next snd
    End If
    Circle (bx, by), br 'ball
    Circle (bx, by), 2, &HFFFFFF00 'ball
    drawStar
    Locate 1, 20: Print "Score: "; score
    Locate 1, 70: Print "Balls: "; ball

    bdx = bs * Cos(ba): bdy = bs * Sin(ba)
    bx = bx + bdx
    If bx < br Then bx = br: bdx = -bdx
    If bx > xmax - br Then bx = xmax - br: bdx = -bdx

    by = by + bdy
    If by < br Then by = br: bdy = -bdy
    If by > ymax - br Then by = ymax - br: bdy = -bdy

    ba = _Atan2(bdy, bdx)

    While _MouseInput '                                            paddle
        ma = ma + _MouseWheel * P2 / 72 '5 degrees change
    Wend
    mx = _MouseX: my = _MouseY
    mx1 = mx + mr * Cos(ma)
    my1 = my + mr * Sin(ma)
    mx2 = mx + mr * Cos(ma + P)
    my2 = my + mr * Sin(ma + P)
    Line (mx1, my1)-(mx2, my2), &HFFFF8800
    'draw a handle to track the side the ball is on
    hx1 = mx + br * Cos(ma + Pd2): hy1 = my + br * Sin(ma + Pd2)
    hx2 = mx + br * Cos(ma - Pd2): hy2 = my + br * Sin(ma - Pd2)
    d1 = _Hypot(hx1 - bx, hy1 - by): d2 = _Hypot(hx2 - bx, hy2 - by)

    If d1 < d2 Then
        Line (hx2, hy2)-(mx, my), &HFFFF8800
        paddleNormal = _Atan2(my - hy2, mx - hx2)
    Else
        Line (hx1, hy1)-(mx, my), &HFFFF8800
        paddleNormal = _Atan2(my - hy1, mx - hx1)
    End If

    tx = -99: ty = -99
    dist = _Hypot(bx - mx, by - my) '                             collision?
    If dist < br + mr Then '                                     centers close enough
        contacts = lineIntersectCircle%(mx1, my1, mx2, my2, bx, by, br, ix1, iy1, ix2, iy2)
        'If contacts Then Print "Contact"; contacts ': _DELAY .5 'OK so far
        If contacts = 1 Then 'just touched (or passed through)
            If _Hypot(ix1 - mx, iy1 - my) < br Then tx = ix1: ty = iy1
        ElseIf contacts = 2 Then
            'contact point would have been in middle of 2 points
            tx = (ix1 + ix2) / 2: ty = (iy1 + iy2) / 2
        End If
        If tx > 0 Then ' rebound ball
            Circle (tx, ty), 2 'show contact point

            'relocate bx, by
            bx = tx + br * Cos(paddleNormal) 'this is where the ball would be at contact
            by = ty + br * Sin(paddleNormal)

            'find the angle of reflection
            ba = _Atan2(bdy, bdx)
            aReflect = Abs(paddleNormal - ba) 'apparently I have to flip the next clac by PI
            If ba < paddleNormal Then ba = paddleNormal + aReflect + P Else ba = paddleNormal - aReflect + P

        End If
    End If

    'update death Star
    sx = sx + sdx
    If sx < srO Then sx = srO: sdx = -sdx
    If sx > xmax - sor Then sx = xmax - sr0: sdx = -sdx

    sy = sy + sdy
    If sy < srO Then sy = srO: sdy = -sdy
    If sy > ymax - srO Then sy = ymax - srO: sdy = -sdy
    sa = sa + _Pi * .05

    If _Hypot(sx - bx, sy - by) < br + srO Then
        ball = ball - 1
        For snd = 1200 To 200 Step -50
            Sound snd, .5
        Next
        If ball <= 0 Then ' game over
            Sleep
            End
        End If
        NewStar
    End If
    'If _Hypot(goalx - sx, goaly - sy) < 40 + srO Then
    '    For snd = 900 To 300 Step -50
    '        Sound snd, .5
    '    Next
    '    NewStar
    '    bx = _Width - goalx: by = _Height - goaly: ba = _Pi(2) * Rnd
    'End If

    _Display
    _Limit 60
Wend


' return 0 no Intersect, 1 = tangent 1 point touch, 2 = 2 point intersect
Function lineIntersectCircle% (lx1, ly1, lx2, ly2, cx, cy, r, ix1, iy1, ix2, iy2)

    'needs    SUB slopeYintersect (X1, Y1, X2, Y2, slope, Yintercept)

    If lx1 <> lx2 Then
        slopeYintersect lx1, ly1, lx2, ly2, m, Y0 ' Y0 otherwise know as y Intersect

        ' https://math.stackexchange.com/questions/228841/how-do-i-calculate-the-intersections-of-a-straight-line-and-a-circle
        A = m ^ 2 + 1
        B = 2 * (m * Y0 - m * cy - cx)
        C = cy ^ 2 - r ^ 2 + cx ^ 2 - 2 * Y0 * cy + Y0 ^ 2
        D = B ^ 2 - 4 * A * C 'telling part of Quadratic formula = 0 then circle is tangent  or > 0 then 2 intersect points
        If D < 0 Then ' no intersection
            ix1 = -999: iy1 = -999: ix2 = -999: iy2 = -999: lineIntersectCircle% = 0
        ElseIf D = 0 Then ' one point tangent
            x1 = (-B + Sqr(D)) / (2 * A)
            y1 = m * x1 + Y0
            ix1 = x1: iy1 = y1: ix2 = -999: iy2 = -999: lineIntersectCircle% = 1
        Else '2 points
            x1 = (-B + Sqr(D)) / (2 * A): y1 = m * x1 + Y0
            x2 = (-B - Sqr(D)) / (2 * A): y2 = m * x2 + Y0
            ix1 = x1: iy1 = y1: ix2 = x2: iy2 = y2: lineIntersectCircle% = 2
        End If
    Else 'vertical line
        If r = Abs(lx1 - cx) Then ' tangent
            ix1 = lx1: iy1 = cy: ix2 = -999: iy2 = -999: lineIntersectCircle% = 1
        ElseIf r < Abs(lx1 - cx) Then 'no intersect
            ix1 = -999: iy1 = -999: ix2 = -999: iy2 = -999: lineIntersectCircle% = 0
        Else '2 point intersect
            ydist = Sqr(r ^ 2 - (lx1 - cx) ^ 2)
            ix1 = lx1: iy1 = cy + ydist: ix2 = lx1: iy2 = cy - ydist: lineIntersectCircle% = 2
        End If
    End If
End Function

Sub slopeYintersect (X1, Y1, X2, Y2, slope, Yintercept) ' fix for when x1 = x2
    slope = (Y2 - Y1) / (X2 - X1)
    Yintercept = slope * (0 - X1) + Y1
End Sub

Sub drawShip (x, y, scale, colr As _Unsigned Long) 'shipType     collisions same as circle x, y radius = 30
    Static ls
    Dim light As Long, r As Long, g As Long, b As Long
    r = _Red32(colr): g = _Green32(colr): b = _Blue32(colr)
    fellipse x, y, 6 * scale, 15 * scale, _RGB32(r, g - 120, b - 100)
    fellipse x, y, 18 * scale, 11 * scale, _RGB32(r, g - 60, b - 50)
    fellipse x, y, 30 * scale, 7 * scale, _RGB32(r, g, b)
    For light = 0 To 5
        fcirc x - 30 * scale + scale * 11 * light + ls * scale, y, 1 * scale, _RGB32(ls * 50, ls * 50, ls * 50)
    Next
    ls = ls + 1
    If ls > 5 Then ls = 0
End Sub


' ======== helper subs for drawShip that you can use for other things specially fcirc = fill_circle  x, y, radius, color

Sub fellipse (CX As Long, CY As Long, xr As Long, yr As Long, C As _Unsigned Long)
    If xr = 0 Or yr = 0 Then Exit Sub
    Dim h2 As _Integer64, w2 As _Integer64, h2w2 As _Integer64
    Dim x As Long, y As Long
    w2 = xr * xr: h2 = yr * yr: h2w2 = h2 * w2
    Line (CX - xr, CY)-(CX + xr, CY), C, BF
    Do While y < yr
        y = y + 1
        x = Sqr((h2w2 - y * y * w2) \ h2)
        Line (CX - x, CY + y)-(CX + x, CY + y), C, BF
        Line (CX - x, CY - y)-(CX + x, CY - y), C, BF
    Loop
End Sub

Sub fcirc (x As Long, y As Long, R As Long, C As _Unsigned Long) 'vince version  fill circle x, y, radius, color
    Dim x0 As Long, y0 As Long, e As Long
    x0 = R: y0 = 0: e = 0
    Do While y0 < x0
        If e <= 0 Then
            y0 = y0 + 1
            Line (x - x0, y + y0)-(x + x0, y + y0), C, BF
            Line (x - x0, y - y0)-(x + x0, y - y0), C, BF
            e = e + 2 * y0
        Else
            Line (x - y0, y - x0)-(x + y0, y - x0), C, BF
            Line (x - y0, y + x0)-(x + y0, y + x0), C, BF
            x0 = x0 - 1: e = e - 2 * x0
        End If
    Loop
    Line (x - R, y)-(x + R, y), C, BF
End Sub

Sub NewStar
    r = Rnd * 5 + 1
    sx = Rnd * _Width: sy = Rnd * _Height: srI = Rnd * 20 + 10: srO = Rnd * 20 + 5 + 30
    snP = Int(Rnd * 7) + 3: sa = _Pi(2 * Rnd): sdx = r * Cos(sa): sdy = r * Sin(sa)
End Sub

Sub drawStar
    star sx, sy, srI, srO, snP, sa, &HFF0088FF
End Sub

Sub star (x, y, rInner, rOuter, nPoints, angleOffset, K As _Unsigned Long)
    ' x, y are same as for circle,
    ' rInner is center circle radius
    ' rOuter is the outer most point of star
    ' nPoints is the number of points,
    ' angleOffset = angle offset IN DEGREES, it will be converted to radians in sub
    ' this is to allow us to spin the polygon of n sides
    Dim pAngle, radAngleOffset, x1, y1, x2, y2, x3, y3, i As Long

    pAngle = _D2R(360 / nPoints): radAngleOffset = _D2R(angleOffset)
    x1 = x + rInner * Cos(radAngleOffset)
    y1 = y + rInner * Sin(radAngleOffset)
    For i = 0 To nPoints - 1
        x2 = x + rOuter * Cos(i * pAngle + radAngleOffset + .5 * pAngle)
        y2 = y + rOuter * Sin(i * pAngle + radAngleOffset + .5 * pAngle)
        x3 = x + rInner * Cos((i + 1) * pAngle + radAngleOffset)
        y3 = y + rInner * Sin((i + 1) * pAngle + radAngleOffset)
        ftri x1, y1, x2, y2, x3, y3, K
        'triangles leaked
        Line (x1, y1)-(x2, y2), K
        Line (x2, y2)-(x3, y3), K
        Line (x3, y3)-(x1, y1), K
        x1 = x3: y1 = y3
    Next
    Paint (x, y), K, K
End Sub

Sub ftri (x1, y1, x2, y2, x3, y3, K As _Unsigned Long)
    Dim D As Long
    Static a&
    D = _Dest
    If a& = 0 Then a& = _NewImage(1, 1, 32)
    _Dest a&
    _DontBlend a& '  '<<<< new 2019-12-16 fix
    PSet (0, 0), K
    _Blend a& '<<<< new 2019-12-16 fix
    _Dest D
    _MapTriangle _Seamless(0, 0)-(0, 0)-(0, 0), a& To(x1, y1)-(x2, y2)-(x3, y3)
End Sub

Life is short in space. Smile

   
b = b + ...
Reply
#2
Amazing that it takes so much math to do this. Good job! I tried to put the math into my Pin-Pongy, but it's a bit too difficult for me. Oh well, thanks anyways B+.
Reply
#3
Yeah lot's of math! vince got me going on the angling paddle thing years ago!

I now have a fun new surprise opening, I hope you will try it out.


Attached Files
.zip   Space Pongy v1-1.zip (Size: 29.37 KB / Downloads: 14)
b = b + ...
Reply
#4
LOL! Awesome!!! Here, I'll put my quarter up on the screen to be next. Wink
Reply




Users browsing this thread: 1 Guest(s)