NOT: Difference between revisions

From QB64 Phoenix Edition Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
[[NOT]] is a [[Boolean|boolean]] logical operator that will change a false statement to a true one and vice-versa.  
[[NOT]] is a [[Boolean|boolean]] logical operator that will change a false statement to a true one and vice-versa.




Line 13: Line 13:




{{RelationalTable}}
{{RelationalOperationsPlugin}}




Line 32: Line 32:


''Example 2:'' Reading a file until it reaches the End Of File.
''Example 2:'' Reading a file until it reaches the End Of File.
{{CodeStart}}DO WHILE NOT EOF(1)  
{{CodeStart}}DO WHILE NOT EOF(1)
   INPUT #1, data1, data2, data3
   INPUT #1, data1, data2, data3
LOOP '' ''
LOOP
{{CodeEnd}}
{{CodeEnd}}
:''Explanation:'' [[EOF]] will return 0 until a file ends. NOT converts 0 to -1 so that the loop continues to run. When EOF becomes -1, NOT converts it to 0 to end the loop.
:''Explanation:'' [[EOF]] will return 0 until a file ends. NOT converts 0 to -1 so that the loop continues to run. When EOF becomes -1, NOT converts it to 0 to end the loop.
Line 50: Line 50:
{{Cl|NEXT}}
{{Cl|NEXT}}
{{Cl|PRINT}}
{{Cl|PRINT}}
{{Cl|END SUB}} '' ''
{{Cl|END SUB}}
{{CodeEnd}}
{{CodeEnd}}
{{OutputStart}}-6
{{OutputStart}}-6
Line 57: Line 57:
1111111111111010
1111111111111010
{{OutputEnd}}
{{OutputEnd}}
:''Explanation:'' The bit values of an [[INTEGER]] are 2 [[_BYTE]]s and each bit is an exponent of 2 from 15 to 0 (16 bits). Thus comparing the numerical value with those exponents using [[AND]] reveals the bit values as "1" for bits on or "0" for bits off as text.  
:''Explanation:'' The bit values of an [[INTEGER]] are 2 [[_BYTE]]s and each bit is an exponent of 2 from 15 to 0 (16 bits). Thus comparing the numerical value with those exponents using [[AND]] reveals the bit values as "1" for bits on or "0" for bits off as text.


: QB64 can use [[&B]] to convert the above [[_BIT]] values back to [[INTEGER]] or [[_BYTE]] values as shown below:
: QB64 can use [[&B]] to convert the above [[_BIT]] values back to [[INTEGER]] or [[_BYTE]] values as shown below:
Line 74: Line 74:


{{PageSeeAlso}}
{{PageSeeAlso}}
* [[_BIT]], [[&B]], [[_BYTE]]
* [[_BIT]], [[&B]], [[_BYTE]]
* [[AND]], [[XOR]], [[OR]]
* [[AND]], [[XOR]], [[OR]]
* [[Binary]], [[Boolean]]  
* [[Binary]], [[Boolean]]
* [[Mathematical Operations]]
* [[Mathematical Operations]]




{{PageNavigation}}
{{PageNavigation}}

Latest revision as of 02:10, 23 January 2023

NOT is a boolean logical operator that will change a false statement to a true one and vice-versa.


Syntax

True = -1: False = NOT True


Description

  • In QBasic, True = -1 and False = 0 in boolean logic and evaluation statements.
  • NOT evaluates a value and returns the bitwise opposite, meaning that NOT 0 = -1.
  • Often called a negative logic operator, it returns the opposite of a value as true or false.
  • Values are changed by their bit values so that each bit is changed to the opposite of on or off. See example 3 below.


         Table 3: The relational operations for condition checking.

 In this table, A and B are the Expressions to compare. Both must represent
 the same general type, i.e. they must result into either numerical values
 or STRING values. If a test succeeds, then true (-1) is returned, false (0)
     if it fails, which both can be used in further Boolean evaluations.
 ┌─────────────────────────────────────────────────────────────────────────┐
 │                          Relational Operations                          │
 ├────────────┬───────────────────────────────────────────┬────────────────┤
 │ OperationDescriptionExample usage  │
 ├────────────┼───────────────────────────────────────────┼────────────────┤
 │   A = B    │ Tests if A is equal to B.                 │ IF A = B THEN  │
 ├────────────┼───────────────────────────────────────────┼────────────────┤
 │   A <> B   │ Tests if A is not equal to B.             │ IF A <> B THEN │
 ├────────────┼───────────────────────────────────────────┼────────────────┤
 │   A < B    │ Tests if A is less than B.                │ IF A < B THEN  │
 ├────────────┼───────────────────────────────────────────┼────────────────┤
 │   A > B    │ Tests if A is greater than B.             │ IF A > B THEN  │
 ├────────────┼───────────────────────────────────────────┼────────────────┤
 │   A <= B   │ Tests if A is less than or equal to B.    │ IF A <= B THEN │
 ├────────────┼───────────────────────────────────────────┼────────────────┤
 │   A >= B   │ Tests if A is greater than or equal to B. │ IF A >= B THEN │
 └────────────┴───────────────────────────────────────────┴────────────────┘
   The operations should be very obvious for numerical values. For strings
   be aware that all checks are done case sensitive (i.e. "Foo" <> "foo").
   The equal/not equal check is pretty much straight forward, but for the
   less/greater checks the ASCII value of the first different character is
                          used for decision making:

   E.g. "abc" is less than "abd", because in the first difference (the 3rd
        character) the "c" has a lower ASCII value than the "d".

   This behavior may give you some subtle results, if you are not aware of
                   the ASCII values and the written case:

   E.g. "abc" is greater than "abD", because the small letters have higher
        ASCII values than the capital letters, hence "c" > "D". You may use
        LCASE$ or UCASE$ to make sure both strings have the same case.


               Table 4: The logical operations and its results.

       In this table, A and B are the Expressions to invert or combine.
              Both may be results of former Boolean evaluations.
  ┌────────────────────────────────────────────────────────────────────────┐
  │                           Logical Operations                           │
  ├───────┬───────┬───────┬─────────┬────────┬─────────┬─────────┬─────────┤
  │   ABNOT BA AND BA OR BA XOR BA EQV BA IMP B │
  ├───────┼───────┼───────┼─────────┼────────┼─────────┼─────────┼─────────┤
  │ truetrue  │ false │  true   │ true   │  false  │  true   │  true   │
  ├───────┼───────┼───────┼─────────┼────────┼─────────┼─────────┼─────────┤
  │ truefalse │ true  │  false  │ true   │  true   │  false  │  false  │
  ├───────┼───────┼───────┼─────────┼────────┼─────────┼─────────┼─────────┤
  │ falsetrue  │ false │  false  │ true   │  true   │  false  │  true   │
  ├───────┼───────┼───────┼─────────┼────────┼─────────┼─────────┼─────────┤
  │ falsefalse │ true  │  false  │ false  │  false  │  true   │  true   │
  └───────┴───────┴───────┴─────────┴────────┴─────────┴─────────┴─────────┘
   Note: In most BASIC languages incl. QB64 these are bitwise operations,
         hence the logic is performed for each corresponding bit in both
         operators, where true or false indicates whether a bit is set or
         not set. The outcome of each bit is then placed into the respective
         position to build the bit pattern of the final result value.

   As all Relational Operations return negative one (-1, all bits set) for
    true and zero (0, no bits set) for false, this allows us to use these
    bitwise logical operations to invert or combine any relational checks,
    as the outcome is the same for each bit and so always results into a
            true (-1) or false (0) again for further evaluations.


Examples

Example 1: Alternating between two conditions in a program loop.

DO
switch = NOT switch       'NOT changes value from -1 to 0 and vice-versa
LOCATE 10, 38
IF switch THEN PRINT "True!" ELSE PRINT "False"
SLEEP
k$ = INKEY$
LOOP UNTIL k$ = CHR$(27) ' escape key quit


Example 2: Reading a file until it reaches the End Of File.

DO WHILE NOT EOF(1)
  INPUT #1, data1, data2, data3
LOOP
Explanation: EOF will return 0 until a file ends. NOT converts 0 to -1 so that the loop continues to run. When EOF becomes -1, NOT converts it to 0 to end the loop.


Example 3: So why does NOT 5 = -6? Because NOT changes every bit of a value into the opposite:

PRINT NOT 5
PRINT
ReadBits 5
ReadBits -6

SUB ReadBits (n AS INTEGER) 'change type value and i bit reads for other whole type values
FOR i = 15 TO 0 STEP -1 'see the 16 bit values
    IF n AND 2 ^ i THEN PRINT "1"; ELSE PRINT "0";
NEXT
PRINT
END SUB
-6

0000000000000101
1111111111111010
Explanation: The bit values of an INTEGER are 2 _BYTEs and each bit is an exponent of 2 from 15 to 0 (16 bits). Thus comparing the numerical value with those exponents using AND reveals the bit values as "1" for bits on or "0" for bits off as text.
QB64 can use &B to convert the above _BIT values back to INTEGER or _BYTE values as shown below:
'16 bit INTEGER values from -32768 to 32767
a% = &B0000000000000101
PRINT a%
b% = &B1111111111111010
PRINT b%
'8 bit BYTE values from -128 to 127
a%% = &B00000101
PRINT a%%
b%% = &B11111010
PRINT b%%


See also



Navigation:
Main Page with Articles and Tutorials
Keyword Reference - Alphabetical
Keyword Reference - By usage
Report a broken link