05-18-2024, 03:59 AM
(05-18-2024, 03:32 AM)SMcNeill Wrote:Code: (Select All)ReDim PF(0) As Long
ReDim Shared As Long Prime_Factors(1 To 168)
Screen _NewImage(1280, 900, 32)
_Delay .5
_ScreenMove _Middle
Init
Do
Input "Give me a number from 1 to 1016064 (0 quits) =>"; num
If num <= 0 Or num >= 1016064 Then System
GetPF num, PF()
For i = 0 To UBound(PF)
Print PF(i);
Next
Loop
Sub GetPF (num, PF() As Long)
ReDim PF(1000) As Long
If num < 1 _Orelse num > 1016064 Then Exit Sub
limit = Int(Sqr(num))
PF(0) = 1
If num > 1 Then
count = 1
Do
factor_on = 0
Do
factor_on = factor_on + 1
temp = Prime_Factors(factor_on)
If IsPrime(num) Then
PF(count) = num
finished = -1
Exit Do
ElseIf num Mod temp = 0 Then
PF(count) = temp
count = count + 1
num = num \ temp
Exit Do
End If
Loop
Loop Until finished
End If
ReDim _Preserve PF(count) As Long
End Sub
Function IsPrime (num)
'to check for any given number less than 1,016,064, we only have to do a maximum of 170 comparisons
'as the max value we ever have to check against is the SQR of our number.
'for example, no value higher than 10 could ever be a factor in 100 and be prime!
'so for numbers less than 1,000,000, all we need do is compare them against factors less than 1,000.
'and there's not that many of them, as you can see below!
If num < 2 _Orelse num > 1016064 Then Exit Function
Static As Long Prime_Array_Init, Factor_Count(1 To 10)
Dim As Long factor_on, i, j, factor
If Prime_Array_Init = 0 Then
Prime_Array_Init = -1
Restore Prime_Factor_Count
For i = 1 To 10: Read Factor_Count(i): Next
End If
IsPrime = -1
For j = 1 To 10 'broken down to give 10 quick exit points so we don't check every value for an answer.
For i = 1 To Factor_Count(j)
factor_on = factor_on + 1
factor = Prime_Factors(factor_on)
If num <= factor Then
Exit Function
Else
If num Mod factor = 0 Then IsPrime = 0: Exit Function
End If
Next
If num < factor * factor Then Exit Function
Next
Exit Function
Prime_Factor_Count: 'each value here represents the number of prime factors in number increments of 100
'for example, there are 25 prime numbers between 1 and 100, 21 primes between 101 and 200, ect...
Data 25,21,16,16,17,14,16,14,15,14
End Function
Sub Init
Restore prime_data:
For i = 1 To 168: Read Prime_Factors(i): Next
Exit Sub
prime_data:
Data 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97: 'factors up to 10,000 (100 ^ 2)
Data 101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199: 'up to 44,100 (210 ^ 2)
Data 211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293: 'up to 93,636 (306 ^ 2)
Data 307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397: 'up to 160,000 (400 ^ 2)
Data 401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499: 'up to 252,004 (502 ^ 2)
Data 503,509,521,523,541,547,557,563,569,571,577,587,593,599: 'up to 360,000 (600 ^ 2)
Data 601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691: 'up to 490,000 (700 ^ 2)
Data 701,709,719,727,733,739,743,751,757,761,769,773,787,797: 'up to 652,864 (808 ^ 2)
Data 809,811,821,823,827,829,839,853,857,859,863,877,881,883,887: 'up to 820,836 (906 ^ 2)
Data 907,911,919,929,937,941,947,953,967,971,977,983,991,997: 'up to 1,01,064 (1008 ^ 2)
End Sub
Building upon the IsPrime function, we now have a means to break a number down into its prime factors.
For example:
12 = 2 * 2 * 3
124 = 2 * 2 * 31
Next step for what I'm working on and playing around with will be fraction simplification.
Take a value like 12 / 16... that can simplify down to 3 / 4. This should now have me on the route to do that easily.
(Break the nominator (top number) down to its prime factors. Check those values against the denominator (bottom number). If they divide evenly (mod = 0) then reduce both numbers by that factor.)
Nice! Wish I could do that!
Of all the places on Earth, and all the planets in the Universe, I'd rather live here (Perth, W.A.)
Please visit my Website at: http://oldendayskids.blogspot.com/
Please visit my Website at: http://oldendayskids.blogspot.com/