COS: Difference between revisions
Jump to navigation
Jump to search
Code by Ted Weissgerber
Code by Ben
Navigation:
Main Page with Articles and Tutorials
Keyword Reference - Alphabetical
Keyword Reference - By usage
Report a broken link
No edit summary |
No edit summary |
||
Line 64: | Line 64: | ||
NEXT | NEXT | ||
{{CodeEnd}} | {{CodeEnd}} | ||
{{ | {{Small|Code by Ted Weissgerber}} | ||
''Explanation:'' The 12 circles are placed at radian angles that are 1/12 of 6.28318 or .523598 radians apart. | ''Explanation:'' The 12 circles are placed at radian angles that are 1/12 of 6.28318 or .523598 radians apart. | ||
Line 92: | Line 92: | ||
{{Cl|LOOP}} {{Cl|UNTIL}} {{Cl|INP}}({{Cl|&H}}60) = 1 'escape exit | {{Cl|LOOP}} {{Cl|UNTIL}} {{Cl|INP}}({{Cl|&H}}60) = 1 'escape exit | ||
{{CodeEnd}} | {{CodeEnd}} | ||
{{ | {{Small|Code by Ben}} | ||
{{PageSeeAlso}} | {{PageSeeAlso}} | ||
* [[_PI]] {{ | * [[_PI]] {{Text|(QB64 function)}} | ||
* [[SIN]] {{ | * [[SIN]] {{Text|(sine)}} | ||
* [[ATN]] {{ | * [[ATN]] {{Text|(arctangent)}} | ||
* [[TAN]] {{ | * [[TAN]] {{Text|(tangent)}} | ||
*[[Mathematical Operations]] | *[[Mathematical Operations]] | ||
*[[Mathematical Operations#Derived_Mathematical_Functions|Derived Mathematical Functions]] | *[[Mathematical Operations#Derived_Mathematical_Functions|Derived Mathematical Functions]] |
Latest revision as of 22:20, 11 February 2023
The COS function returns the horizontal component or the cosine of an angle measured in radians.
Syntax
- value! = COS(radianAngle!)
Parameters
- The radianAngle! must be measured in radians.
Description
- To convert from degrees to radians, multiply degrees * π / 180.
- COSINE is the horizontal component of a unit vector in the direction theta (θ).
- COS(x) can be calculated in either SINGLE or DOUBLE precision depending on its argument.
- COS(4) = -.6536436 ...... COS(4#) = -.6536436208636119
Examples
Example 1: Converting degree angles to radians for QBasic's trig functions and drawing the line at the angle.
SCREEN 12 PI = 4 * ATN(1) PRINT "PI = 4 * ATN(1) ="; PI PRINT "COS(PI) = "; COS(PI) PRINT "SIN(PI) = "; SIN(PI) DO PRINT INPUT "Enter the degree angle (0 quits): ", DEGREES% RADIANS = DEGREES% * PI / 180 PRINT "RADIANS = DEGREES% * PI / 180 = "; RADIANS PRINT "X = COS(RADIANS) = "; COS(RADIANS) PRINT "Y = SIN(RADIANS) = "; SIN(RADIANS) CIRCLE (400, 240), 2, 12 LINE (400, 240)-(400 + (50 * SIN(RADIANS)), 240 + (50 * COS(RADIANS))), 11 DEGREES% = RADIANS * 180 / PI PRINT "DEGREES% = RADIANS * 180 / PI ="; DEGREES% LOOP UNTIL DEGREES% = 0 |
PI = 4 * ATN(1) = 3.141593 COS(PI) = -1 SIN(PI) = -8.742278E-08 Enter the degree angle (0 quits): 45 RADIANS = DEGREES% * PI / 180 = .7853982 X = COS(RADIANS) = .7071068 Y = SIN(RADIANS) = .7071068 DEGREES% = RADIANS * 180 / PI = 45 |
- Explanation: When 8.742278E-08(.00000008742278) is returned by SIN or COS the value is essentially zero.
Example 2: Creating 12 analog clock hour points using CIRCLEs and PAINT
PI2 = 8 * ATN(1) '2 * π arc! = PI2 / 12 'arc interval between hour circles SCREEN 12 FOR t! = 0 TO PI2 STEP arc! cx% = CINT(COS(t!) * 70) ' pixel columns (circular radius = 70) cy% = CINT(SIN(t!) * 70) ' pixel rows CIRCLE (cx% + 320, cy% + 240), 3, 12 PAINT STEP(0, 0), 9, 12 NEXT |
Explanation: The 12 circles are placed at radian angles that are 1/12 of 6.28318 or .523598 radians apart.
Example 3: Creating a rotating spiral with COS and SIN.
SCREEN _NEWIMAGE(640, 480, 32) DO LINE (0, 0)-(640, 480), _RGB(0, 0, 0), BF j = j + 1 PSET (320, 240) FOR i = 0 TO 100 STEP .1 LINE -(.05 * i * i * COS(j + i) + 320, .05 * i * i * SIN(j + i) + 240) NEXT PSET (320, 240) FOR i = 0 TO 100 STEP .1 LINE -(.05 * i * i * COS(j + i + 10) + 320, .05 * i * i * SIN(j + i + 10) + 240) NEXT PSET (320, 240) FOR i = 0 TO 100 STEP .1 PAINT (.05 * i * i * COS(j + i + 5) + 320, .05 * i * i * SIN(j + i + 5) + 240) NEXT _DISPLAY _LIMIT 30 LOOP UNTIL INP(&H60) = 1 'escape exit |
See also
- _PI (QB64 function)
- SIN (sine)
- ATN (arctangent)
- TAN (tangent)
- Mathematical Operations
- Derived Mathematical Functions